Cargando…
Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region
BACKGROUND: As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679768/ https://www.ncbi.nlm.nih.gov/pubmed/19400943 http://dx.doi.org/10.1186/1475-2875-8-84 |
_version_ | 1782166924047679488 |
---|---|
author | Verhaeghen, Katrijn Van Bortel, Wim Trung, Ho Dinh Sochantha, Tho Coosemans, Marc |
author_facet | Verhaeghen, Katrijn Van Bortel, Wim Trung, Ho Dinh Sochantha, Tho Coosemans, Marc |
author_sort | Verhaeghen, Katrijn |
collection | PubMed |
description | BACKGROUND: As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, Anopheles epiroticus, was highly pyrethroid-resistant in the Mekong delta, whereas Anopheles minimus sensu lato was pyrethroid-resistant in northern Vietnam. Anopheles dirus sensu stricto showed possible resistance to type II pyrethroids in central Vietnam. Anopheles subpictus was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved. METHODS: By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region. RESULTS: Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of Anopheles populations from the Mekong region for the presence of knockdown resistance (kdr), but no kdr mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in An. epiroticus and An. subpictus of the Mekong delta. The DDT resistance in An. subpictus might be conferred to a high GST activity. The pyrethroid resistance in An. minimus s.l. is possibly associated with increased detoxification by esterases and P450 monooxygenases. CONCLUSION: As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region. |
format | Text |
id | pubmed-2679768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26797682009-05-09 Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region Verhaeghen, Katrijn Van Bortel, Wim Trung, Ho Dinh Sochantha, Tho Coosemans, Marc Malar J Research BACKGROUND: As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, Anopheles epiroticus, was highly pyrethroid-resistant in the Mekong delta, whereas Anopheles minimus sensu lato was pyrethroid-resistant in northern Vietnam. Anopheles dirus sensu stricto showed possible resistance to type II pyrethroids in central Vietnam. Anopheles subpictus was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved. METHODS: By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region. RESULTS: Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of Anopheles populations from the Mekong region for the presence of knockdown resistance (kdr), but no kdr mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in An. epiroticus and An. subpictus of the Mekong delta. The DDT resistance in An. subpictus might be conferred to a high GST activity. The pyrethroid resistance in An. minimus s.l. is possibly associated with increased detoxification by esterases and P450 monooxygenases. CONCLUSION: As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region. BioMed Central 2009-04-28 /pmc/articles/PMC2679768/ /pubmed/19400943 http://dx.doi.org/10.1186/1475-2875-8-84 Text en Copyright © 2009 Verhaeghen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Verhaeghen, Katrijn Van Bortel, Wim Trung, Ho Dinh Sochantha, Tho Coosemans, Marc Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region |
title | Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region |
title_full | Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region |
title_fullStr | Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region |
title_full_unstemmed | Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region |
title_short | Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region |
title_sort | absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the mekong region |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679768/ https://www.ncbi.nlm.nih.gov/pubmed/19400943 http://dx.doi.org/10.1186/1475-2875-8-84 |
work_keys_str_mv | AT verhaeghenkatrijn absenceofknockdownresistancesuggestsmetabolicresistanceinthemainmalariavectorsofthemekongregion AT vanbortelwim absenceofknockdownresistancesuggestsmetabolicresistanceinthemainmalariavectorsofthemekongregion AT trunghodinh absenceofknockdownresistancesuggestsmetabolicresistanceinthemainmalariavectorsofthemekongregion AT sochanthatho absenceofknockdownresistancesuggestsmetabolicresistanceinthemainmalariavectorsofthemekongregion AT coosemansmarc absenceofknockdownresistancesuggestsmetabolicresistanceinthemainmalariavectorsofthemekongregion |