Cargando…
Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection
BACKGROUND: Breast cancer belongs to the most frequent and severe cancer types in human. Since excretion of modified nucleosides from increased RNA metabolism has been proposed as a potential target in pathogenesis of breast cancer, the aim of the present study was to elucidate the predictability of...
Autores principales: | Henneges, Carsten, Bullinger, Dino, Fux, Richard, Friese, Natascha, Seeger, Harald, Neubauer, Hans, Laufer, Stefan, Gleiter, Christoph H, Schwab, Matthias, Zell, Andreas, Kammerer, Bernd |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680413/ https://www.ncbi.nlm.nih.gov/pubmed/19344524 http://dx.doi.org/10.1186/1471-2407-9-104 |
Ejemplares similares
-
Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling
por: Bullinger, Dino, et al.
Publicado: (2007) -
A factorization method for the classification of infrared spectra
por: Henneges, Carsten, et al.
Publicado: (2010) -
Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors
por: Schröder, Adrian, et al.
Publicado: (2010) -
Interpreting linear support vector machine models with heat map molecule coloring
por: Rosenbaum, Lars, et al.
Publicado: (2011) -
Predictors of Individual Response to Placebo or Tadalafil 5mg among Men with Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia: An Integrated Clinical Data Mining Analysis
por: Fusco, Ferdinando, et al.
Publicado: (2015)