Cargando…
Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging
In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overex...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680484/ https://www.ncbi.nlm.nih.gov/pubmed/19462004 http://dx.doi.org/10.1371/journal.pone.0005631 |
_version_ | 1782166955159977984 |
---|---|
author | Casas, François Pessemesse, Laurence Grandemange, Stéphanie Seyer, Pascal Baris, Olivier Gueguen, Naïg Ramonatxo, Christelle Perrin, Florence Fouret, Gilles Lepourry, Laurence Cabello, Gérard Wrutniak-Cabello, Chantal |
author_facet | Casas, François Pessemesse, Laurence Grandemange, Stéphanie Seyer, Pascal Baris, Olivier Gueguen, Naïg Ramonatxo, Christelle Perrin, Florence Fouret, Gilles Lepourry, Laurence Cabello, Gérard Wrutniak-Cabello, Chantal |
author_sort | Casas, François |
collection | PubMed |
description | In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative. Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase) were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1. Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia. |
format | Text |
id | pubmed-2680484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26804842009-05-20 Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging Casas, François Pessemesse, Laurence Grandemange, Stéphanie Seyer, Pascal Baris, Olivier Gueguen, Naïg Ramonatxo, Christelle Perrin, Florence Fouret, Gilles Lepourry, Laurence Cabello, Gérard Wrutniak-Cabello, Chantal PLoS One Research Article In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative. Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase) were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1. Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia. Public Library of Science 2009-05-20 /pmc/articles/PMC2680484/ /pubmed/19462004 http://dx.doi.org/10.1371/journal.pone.0005631 Text en Casas et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Casas, François Pessemesse, Laurence Grandemange, Stéphanie Seyer, Pascal Baris, Olivier Gueguen, Naïg Ramonatxo, Christelle Perrin, Florence Fouret, Gilles Lepourry, Laurence Cabello, Gérard Wrutniak-Cabello, Chantal Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging |
title | Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging |
title_full | Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging |
title_fullStr | Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging |
title_full_unstemmed | Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging |
title_short | Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging |
title_sort | overexpression of the mitochondrial t3 receptor induces skeletal muscle atrophy during aging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680484/ https://www.ncbi.nlm.nih.gov/pubmed/19462004 http://dx.doi.org/10.1371/journal.pone.0005631 |
work_keys_str_mv | AT casasfrancois overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT pessemesselaurence overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT grandemangestephanie overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT seyerpascal overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT barisolivier overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT gueguennaig overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT ramonatxochristelle overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT perrinflorence overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT fouretgilles overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT lepourrylaurence overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT cabellogerard overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging AT wrutniakcabellochantal overexpressionofthemitochondrialt3receptorinducesskeletalmuscleatrophyduringaging |