Cargando…
A kernel-based approach for detecting outliers of high-dimensional biological data
BACKGROUND: In many cases biomedical data sets contain outliers that make it difficult to achieve reliable knowledge discovery. Data analysis without removing outliers could lead to wrong results and provide misleading information. RESULTS: We propose a new outlier detection method based on Kullback...
Autores principales: | Oh, Jung Hun, Gao, Jean |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681063/ https://www.ncbi.nlm.nih.gov/pubmed/19426455 http://dx.doi.org/10.1186/1471-2105-10-S4-S7 |
Ejemplares similares
-
Kernel score statistic for dependent data
por: Malzahn, Dörthe, et al.
Publicado: (2014) -
A new pairwise kernel for biological network inference with support vector machines
por: Vert, Jean-Philippe, et al.
Publicado: (2007) -
Evaluating outlier loci and their effect on the identification of pedigree errors
por: Wang, Ke-Sheng, et al.
Publicado: (2005) -
High dimensional biological data retrieval optimization with NoSQL technology
por: Wang, Shicai, et al.
Publicado: (2014) -
A modular kernel approach for integrative analysis of protein domain boundaries
por: Yoo, Paul D, et al.
Publicado: (2009)