Cargando…

Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater

A group of compounds structurally similar to bis(4-hydroxyphenyl)propane (bisphenol A, BPA) are called bisphenols (BPs), and some of them can partially replace BPA in industrial applications. The production and consumption of BPs other than BPA, especially those of bis(4-hydroxyphenyl)methane (bisph...

Descripción completa

Detalles Bibliográficos
Autores principales: Danzl, Erica, Sei, Kazunari, Soda, Satoshi, Ike, Michihiko, Fujita, Masanori
Formato: Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681201/
https://www.ncbi.nlm.nih.gov/pubmed/19440529
http://dx.doi.org/10.3390/ijerph6041472
_version_ 1782167025306566656
author Danzl, Erica
Sei, Kazunari
Soda, Satoshi
Ike, Michihiko
Fujita, Masanori
author_facet Danzl, Erica
Sei, Kazunari
Soda, Satoshi
Ike, Michihiko
Fujita, Masanori
author_sort Danzl, Erica
collection PubMed
description A group of compounds structurally similar to bis(4-hydroxyphenyl)propane (bisphenol A, BPA) are called bisphenols (BPs), and some of them can partially replace BPA in industrial applications. The production and consumption of BPs other than BPA, especially those of bis(4-hydroxyphenyl)methane (bisphenol F, BPF) and bis(4-hydroxyphenyl)sulfone (bisphenol S, BPS), have increased recently, leading to their detection as contaminants in the aquatic environment. The three compounds tested 100% positive for estrus response in 1936 and concerns about their health risks have been increasing. Abundant data on degradation of bisphenols (BPs) has been published, but results for biodegradation of BPs in seawater are lacking. However, several research groups have focused on this topic recently. In this study, the biodegradation behaviors of three BPs, namely BPA, BPF and BPS, in seawater were investigated using TOC Handai (TOC, potential test) and river (sea) die-away (SDA, simulation test) methods, which are both a kind of river-die-away test. The main difference between the tests is that indigenous microcosms remain in the sampled raw seawater for the SDA experiments, but they are removed through filtration and dispersed into artificial seawater for the TOC experiments. The BPs, except for BPS, were degraded using both methods. The SDA method produced better biodegradation results than the TOC method in terms of degradation time (both lag and degradation periods). Biodegradation efficiencies were measured at 75–100% using the SDA method and 13–63% using the TOC method. BPF showed better degradation efficiency than BPA, BPF was > 92% and BPA 83% depleted according to the SDA tests. BPS degradation was not observed. As a conclusion, the biodegradability of the three BPs in seawater could be ranked as BPF > BPA ≫ BPS. BPF is more biodegradable than BPA in seawater and BPS is more likely to accumulate in the aquatic environment. BPS poses a lower risk to human health and to the environment than BPA or BPF but it is not amenable to biodegradation and might be persistent and become an ecological burden. Thus other degradation methods need to be found for the removal of BPS in the environment.
format Text
id pubmed-2681201
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-26812012009-05-13 Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater Danzl, Erica Sei, Kazunari Soda, Satoshi Ike, Michihiko Fujita, Masanori Int J Environ Res Public Health Article A group of compounds structurally similar to bis(4-hydroxyphenyl)propane (bisphenol A, BPA) are called bisphenols (BPs), and some of them can partially replace BPA in industrial applications. The production and consumption of BPs other than BPA, especially those of bis(4-hydroxyphenyl)methane (bisphenol F, BPF) and bis(4-hydroxyphenyl)sulfone (bisphenol S, BPS), have increased recently, leading to their detection as contaminants in the aquatic environment. The three compounds tested 100% positive for estrus response in 1936 and concerns about their health risks have been increasing. Abundant data on degradation of bisphenols (BPs) has been published, but results for biodegradation of BPs in seawater are lacking. However, several research groups have focused on this topic recently. In this study, the biodegradation behaviors of three BPs, namely BPA, BPF and BPS, in seawater were investigated using TOC Handai (TOC, potential test) and river (sea) die-away (SDA, simulation test) methods, which are both a kind of river-die-away test. The main difference between the tests is that indigenous microcosms remain in the sampled raw seawater for the SDA experiments, but they are removed through filtration and dispersed into artificial seawater for the TOC experiments. The BPs, except for BPS, were degraded using both methods. The SDA method produced better biodegradation results than the TOC method in terms of degradation time (both lag and degradation periods). Biodegradation efficiencies were measured at 75–100% using the SDA method and 13–63% using the TOC method. BPF showed better degradation efficiency than BPA, BPF was > 92% and BPA 83% depleted according to the SDA tests. BPS degradation was not observed. As a conclusion, the biodegradability of the three BPs in seawater could be ranked as BPF > BPA ≫ BPS. BPF is more biodegradable than BPA in seawater and BPS is more likely to accumulate in the aquatic environment. BPS poses a lower risk to human health and to the environment than BPA or BPF but it is not amenable to biodegradation and might be persistent and become an ecological burden. Thus other degradation methods need to be found for the removal of BPS in the environment. Molecular Diversity Preservation International (MDPI) 2009-04 2009-04-17 /pmc/articles/PMC2681201/ /pubmed/19440529 http://dx.doi.org/10.3390/ijerph6041472 Text en © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Danzl, Erica
Sei, Kazunari
Soda, Satoshi
Ike, Michihiko
Fujita, Masanori
Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater
title Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater
title_full Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater
title_fullStr Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater
title_full_unstemmed Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater
title_short Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater
title_sort biodegradation of bisphenol a, bisphenol f and bisphenol s in seawater
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681201/
https://www.ncbi.nlm.nih.gov/pubmed/19440529
http://dx.doi.org/10.3390/ijerph6041472
work_keys_str_mv AT danzlerica biodegradationofbisphenolabisphenolfandbisphenolsinseawater
AT seikazunari biodegradationofbisphenolabisphenolfandbisphenolsinseawater
AT sodasatoshi biodegradationofbisphenolabisphenolfandbisphenolsinseawater
AT ikemichihiko biodegradationofbisphenolabisphenolfandbisphenolsinseawater
AT fujitamasanori biodegradationofbisphenolabisphenolfandbisphenolsinseawater