Cargando…

Tat-SF1 Is Not Required for Tat Transactivation but Does Regulate the Relative Levels of Unspliced and Spliced HIV-1 RNAs

BACKGROUND: HIV-1 relies on several host proteins for productive viral transcription. HIV-1 Tat-specific factor 1 (Tat-SF1) is among these cofactors that were identified by in vitro reconstituted transcription reactions with immunodepleted nuclear extracts. At the onset of this work, the prevailing...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Heather B., Saunders, Kevin O., Tomaras, Georgia D., Garcia-Blanco, Mariano A.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682658/
https://www.ncbi.nlm.nih.gov/pubmed/19479034
http://dx.doi.org/10.1371/journal.pone.0005710
Descripción
Sumario:BACKGROUND: HIV-1 relies on several host proteins for productive viral transcription. HIV-1 Tat-specific factor 1 (Tat-SF1) is among these cofactors that were identified by in vitro reconstituted transcription reactions with immunodepleted nuclear extracts. At the onset of this work, the prevailing hypothesis was that Tat-SF1 was a required cofactor for the viral regulatory protein, Tat; however, this had not previously been formally tested in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To directly address the involvement of Tat-SF1 in HIV-1 gene expression, we depleted Tat-SF1 in HeLa cells by conventional expression of shRNAs and in T- Rex -293 cells containing tetracycline-inducible shRNAs targeting Tat-SF1. We achieved efficient depletion of Tat-SF1 and demonstrated that this did not affect cell viability. HIV-1 infectivity decreased in Tat-SF1-depleted cells, but only when multiple rounds of infection occurred. Neither Tat-dependent nor basal transcription from the HIV-1 LTR was affected by Tat-SF1 depletion, suggesting that the decrease in infectivity was due to a deficiency at a later step in the viral lifecycle. Finally, Tat-SF1 depletion resulted in an increase in the ratio of unspliced to spliced viral transcripts. CONCLUSIONS/SIGNIFICANCE: Tat-SF1 is not required for regulating HIV-1 transcription, but is required for maintaining the ratios of different classes of HIV-1 transcripts. These new findings highlight a novel, post-transcriptional role for Tat-SF1 in the HIV-1 life cycle.