Cargando…

Extremes of Clinical and Enzymatic Phenotypes in Children With Hyperinsulinism Caused by Glucokinase Activating Mutations

OBJECTIVE: Heterozygous activating mutations of glucokinase have been reported to cause hypoglycemia attributable to hyperinsulinism in a limited number of families. We report three children with de novo glucokinase hyperinsulinism mutations who displayed a spectrum of clinical phenotypes correspond...

Descripción completa

Detalles Bibliográficos
Autores principales: Sayed, Samir, Langdon, David R., Odili, Stella, Chen, Pan, Buettger, Carol, Schiffman, Alisa B., Suchi, Mariko, Taub, Rebecca, Grimsby, Joseph, Matschinsky, Franz M., Stanley, Charles A.
Formato: Texto
Lenguaje:English
Publicado: American Diabetes Association 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682682/
https://www.ncbi.nlm.nih.gov/pubmed/19336674
http://dx.doi.org/10.2337/db08-1792
Descripción
Sumario:OBJECTIVE: Heterozygous activating mutations of glucokinase have been reported to cause hypoglycemia attributable to hyperinsulinism in a limited number of families. We report three children with de novo glucokinase hyperinsulinism mutations who displayed a spectrum of clinical phenotypes corresponding to marked differences in enzyme kinetics. RESEARCH DESIGN AND METHODS: Mutations were directly sequenced, and mutants were expressed as glutathionyl S-transferase–glucokinase fusion proteins. Kinetic analysis of the enzymes included determinations of stability, activity index, the response to glucokinase activator drug, and the effect of glucokinase regulatory protein. RESULTS: Child 1 had an ins454A mutation, child 2 a W99L mutation, and child 3 an M197I mutation. Diazoxide treatment was effective in child 3 but ineffective in child 1 and only partially effective in child 2. Expression of the mutant glucokinase ins454A, W99L, and M197I enzymes revealed a continuum of high relative activity indexes in the three children (26, 8.9, and 3.1, respectively; wild type = 1.0). Allosteric responses to inhibition by glucokinase regulatory protein and activation by the drug RO0281675 were impaired by the ins454A but unaffected by the M197I mutation. Estimated thresholds for glucose-stimulated insulin release were more severely reduced by the ins454A than the M197I mutation and intermediate in the W99L mutation (1.1, 3.5, and 2.2 mmol/l, respectively; wild type = 5.0 mmol/l). CONCLUSIONS: These results confirm the potency of glucokinase as the pancreatic β-cell glucose sensor, and they demonstrate that responsiveness to diazoxide varies with genotype in glucokinase hyperinsulinism resulting in hypoglycemia, which can be more difficult to control than previously believed.