Cargando…
Markov clustering versus affinity propagation for the partitioning of protein interaction graphs
BACKGROUND: Genome scale data on protein interactions are generally represented as large networks, or graphs, where hundreds or thousands of proteins are linked to one another. Since proteins tend to function in groups, or complexes, an important goal has been to reliably identify protein complexes...
Autores principales: | Vlasblom, James, Wodak, Shoshana J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682798/ https://www.ncbi.nlm.nih.gov/pubmed/19331680 http://dx.doi.org/10.1186/1471-2105-10-99 |
Ejemplares similares
-
Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs
por: Hartsperger, Mara L, et al.
Publicado: (2010) -
DHPV: a distributed algorithm for large-scale graph partitioning
por: Adoni, Wilfried Yves Hamilton, et al.
Publicado: (2020) -
Clustering metagenomic sequences with interpolated Markov models
por: Kelley, David R, et al.
Publicado: (2010) -
iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence
por: Turner, Brian, et al.
Publicado: (2010) -
Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
por: Yang, Fang, et al.
Publicado: (2020)