Cargando…
Factor analysis models for structuring covariance matrices of additive genetic effects: a Bayesian implementation
Multivariate linear models are increasingly important in quantitative genetics. In high dimensional specifications, factor analysis (FA) may provide an avenue for structuring (co)variance matrices, thus reducing the number of parameters needed for describing (co)dispersion. We describe how FA can be...
Autores principales: | de los Campos, Gustavo, Gianola, Daniel |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682801/ https://www.ncbi.nlm.nih.gov/pubmed/17897592 http://dx.doi.org/10.1186/1297-9686-39-5-481 |
Ejemplares similares
-
Dissecting High-Dimensional Phenotypes with Bayesian Sparse Factor Analysis of Genetic Covariance Matrices
por: Runcie, Daniel E., et al.
Publicado: (2013) -
Local genetic covariance between serum urate and kidney function estimated with Bayesian multitrait models
por: Lupi, Alexa S, et al.
Publicado: (2022) -
Factor-analytic models for genotype × environment type problems and structured covariance matrices
por: Meyer, Karin
Publicado: (2009) -
Genomic mating in outbred species: predicting cross usefulness with additive
and total genetic covariance matrices
por: Wolfe, Marnin D, et al.
Publicado: (2021) -
Corrigendum to: Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices
por: Wolfe, Marnin D, et al.
Publicado: (2021)