Cargando…

A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle

A method that predicts the genetic composition and inbreeding (F) of the future dairy cow population using information on the current cow population, semen use and progeny test bulls is described. This is combined with information on genetic merit of bulls to compare bull selection methods that mini...

Descripción completa

Detalles Bibliográficos
Autores principales: Haile-Mariam, Mekonnen, Bowman, Phil J, Goddard, Mike E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682817/
https://www.ncbi.nlm.nih.gov/pubmed/17612478
http://dx.doi.org/10.1186/1297-9686-39-4-369
_version_ 1782167097678233600
author Haile-Mariam, Mekonnen
Bowman, Phil J
Goddard, Mike E
author_facet Haile-Mariam, Mekonnen
Bowman, Phil J
Goddard, Mike E
author_sort Haile-Mariam, Mekonnen
collection PubMed
description A method that predicts the genetic composition and inbreeding (F) of the future dairy cow population using information on the current cow population, semen use and progeny test bulls is described. This is combined with information on genetic merit of bulls to compare bull selection methods that minimise F and maximise breeding value for profit (called APR in Australia). The genetic composition of the future cow population of Australian Holstein-Friesian (HF) and Jersey up to 6 years into the future was predicted. F in Australian HF and Jersey breeds is likely to increase by about 0.002 and 0.003 per year between 2002 and 2008, respectively. A comparison of bull selection methods showed that a method that selects the best bull from all available bulls for each current or future cow, based on its calf's APR minus F depression, is better than bull selection methods based on APR alone, APR adjusted for mean F of prospective progeny after random mating and mean APR adjusted for the relationship between the selected bulls. This method reduced F of prospective progeny by about a third to a half compared to the other methods when bulls are mated to current and future cows that will be available 5 to 6 years from now. The method also reduced the relationship between the bulls selected to nearly the same extent as the method that is aimed at maximising genetic gain adjusted for the relationship between bulls. The method achieves this because cows with different pedigree exist in the population and the method selects relatively unrelated bulls to mate to these different cows. Selecting the best bull for each current or future cow so that the calf's genetic merit minus F depression is maximised can slow the rate of increase in F in the population.
format Text
id pubmed-2682817
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26828172009-05-16 A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle Haile-Mariam, Mekonnen Bowman, Phil J Goddard, Mike E Genet Sel Evol Research A method that predicts the genetic composition and inbreeding (F) of the future dairy cow population using information on the current cow population, semen use and progeny test bulls is described. This is combined with information on genetic merit of bulls to compare bull selection methods that minimise F and maximise breeding value for profit (called APR in Australia). The genetic composition of the future cow population of Australian Holstein-Friesian (HF) and Jersey up to 6 years into the future was predicted. F in Australian HF and Jersey breeds is likely to increase by about 0.002 and 0.003 per year between 2002 and 2008, respectively. A comparison of bull selection methods showed that a method that selects the best bull from all available bulls for each current or future cow, based on its calf's APR minus F depression, is better than bull selection methods based on APR alone, APR adjusted for mean F of prospective progeny after random mating and mean APR adjusted for the relationship between the selected bulls. This method reduced F of prospective progeny by about a third to a half compared to the other methods when bulls are mated to current and future cows that will be available 5 to 6 years from now. The method also reduced the relationship between the bulls selected to nearly the same extent as the method that is aimed at maximising genetic gain adjusted for the relationship between bulls. The method achieves this because cows with different pedigree exist in the population and the method selects relatively unrelated bulls to mate to these different cows. Selecting the best bull for each current or future cow so that the calf's genetic merit minus F depression is maximised can slow the rate of increase in F in the population. BioMed Central 2007-07-06 /pmc/articles/PMC2682817/ /pubmed/17612478 http://dx.doi.org/10.1186/1297-9686-39-4-369 Text en Copyright © 2007 INRA, EDP Sciences
spellingShingle Research
Haile-Mariam, Mekonnen
Bowman, Phil J
Goddard, Mike E
A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
title A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
title_full A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
title_fullStr A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
title_full_unstemmed A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
title_short A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
title_sort practical approach for minimising inbreeding and maximising genetic gain in dairy cattle
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682817/
https://www.ncbi.nlm.nih.gov/pubmed/17612478
http://dx.doi.org/10.1186/1297-9686-39-4-369
work_keys_str_mv AT hailemariammekonnen apracticalapproachforminimisinginbreedingandmaximisinggeneticgainindairycattle
AT bowmanphilj apracticalapproachforminimisinginbreedingandmaximisinggeneticgainindairycattle
AT goddardmikee apracticalapproachforminimisinginbreedingandmaximisinggeneticgainindairycattle
AT hailemariammekonnen practicalapproachforminimisinginbreedingandmaximisinggeneticgainindairycattle
AT bowmanphilj practicalapproachforminimisinginbreedingandmaximisinggeneticgainindairycattle
AT goddardmikee practicalapproachforminimisinginbreedingandmaximisinggeneticgainindairycattle