Cargando…
Plant Spliceosomal Introns: Not Only Cut and Paste
Spliceosomal introns in higher eukaryotes are present in a high percentage of protein coding genes and represent a high proportion of transcribed nuclear DNA. In the last fifteen years, a growing mass of data concerning functional roles carried out by such intervening sequences elevated them from a...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers Ltd.
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682935/ https://www.ncbi.nlm.nih.gov/pubmed/19452040 http://dx.doi.org/10.2174/138920208784533629 |
Sumario: | Spliceosomal introns in higher eukaryotes are present in a high percentage of protein coding genes and represent a high proportion of transcribed nuclear DNA. In the last fifteen years, a growing mass of data concerning functional roles carried out by such intervening sequences elevated them from a selfish burden carried over by the nucleus to important active regulatory elements. Introns mediate complex gene regulation via alternative splicing; they may act in cis as expression enhancers through IME (intron-mediated enhancement of gene expression) and in trans as negative regulators through the generation of intronic microRNA. Furthermore, some introns also contain promoter sequences for alternative transcripts. Nevertheless, such regulatory roles do not require long conserved sequences, so that introns are relatively free to evolve faster than exons: this feature makes them important tools for evolutionary studies and provides the basis for the development of DNA molecular markers for polymorphisms detection. A survey of introns functions in the plant kingdom is presented. |
---|