Cargando…

Alteration of TLR3 pathways by glucocorticoids may be responsible for immunosusceptibility of human corneal epithelial cells to viral infections

Purpose: The toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA and its synthetic analog polyriboinosinic-polyribocytidylic acid (poly(I:C)), and the activation of TLR3 is known to induce the production of type I interferon (IFN) and inflammatory cytokines/chemokines. The purpose of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hara, Yuko, Shiraishi, Atsushi, Kobayashi, Takeshi, Kadota, Yuko, Shirakata, Yuji, Hashimoto, Koji, Ohashi, Yuichi
Formato: Texto
Lenguaje:English
Publicado: Molecular Vision 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683030/
https://www.ncbi.nlm.nih.gov/pubmed/19452017
Descripción
Sumario:Purpose: The toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA and its synthetic analog polyriboinosinic-polyribocytidylic acid (poly(I:C)), and the activation of TLR3 is known to induce the production of type I interferon (IFN) and inflammatory cytokines/chemokines. The purpose of this study was to determine the role played by innate responses to a herpes simplex virus 1 (HSV-1) infection of the corneal epithelial cells. In addition, we determined the effects of immunosuppressive drugs on the innate responses. Methods: Cultured human corneal epithelial cells (HCECs) were exposed to poly(I:C), and the expressions of the mRNAs of the cytokines/chemokines macrophage-inflammatory protein 1 alpha (MIP1-α), macrophage-inflammatory protein 1 beta (MIP1-β), interleukin-6 (IL-6), interleukin-8 (IL-8), regulated on activation, normal T cell expressed and secreted (RANTES), Interferon-beta (IFN-β), and TLR3 were determined using real-time reverse transcription-polymerase chain reaction (RT-PCR). The effects of dexamethasone (DEX, 10(-6) or 10(-5) M) and cyclosporine A (CsA, 10(-6) or 10(-5) M) on the expression of these cytokines and TLR3 were also determined using real-time RT-PCR. Levels of MIP1-α, MIP1-β, IL-6, IL-8, RANTES, and IFN-β were measured using the enzyme-linked immunosorbent assay (ELISA). The activation of nuclear factor kappa B (NFκB) and interferon regulatory factor 3 (IRF3) in HCECs was assessed by immunohistochemical staining. The effects of DEX and CsA on HCECs exposed to HSV-1 (McKrae strain) were also examined. Results: The expressions of MIP1-α, MIP1-β, IL-6, IL-8, RANTES, IFN-β, and TLR3 were up-regulated in HCECs exposed to poly(I:C). The poly(I:C)-induced expressions of IL-6 and IL-8 were down-regulated by both DEX and CsA, while the expressions of IFN-β and TLR3 were suppressed by DEX alone. Similarly, the poly(I:C)-induced activation of NFκB was decreased by both DEX and CsA, and the activation of IRF3 was reduced by DEX alone. When HCECs were inoculated with HSV-1, DEX led to a decrease in the expression of IL6, IFN-β, and TLR3, and an extension of plaque formation. Conclusion: These results indicate that DEX may increase the susceptibility of HCECs to viral infections by altering the TLR3 signaling pathways.