Cargando…
Multichromosomal median and halving problems under different genomic distances
BACKGROUND: Genome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The com...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683817/ https://www.ncbi.nlm.nih.gov/pubmed/19386099 http://dx.doi.org/10.1186/1471-2105-10-120 |
_version_ | 1782167139206037504 |
---|---|
author | Tannier, Eric Zheng, Chunfang Sankoff, David |
author_facet | Tannier, Eric Zheng, Chunfang Sankoff, David |
author_sort | Tannier, Eric |
collection | PubMed |
description | BACKGROUND: Genome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The complexity of the median problem for unichromosomal genomes (permutations) has been settled for both the breakpoint distance and the reversal distance. Although the multichromosomal case has often been assumed to be a simple generalization of the unichromosomal case, it is also a relaxation so that complexity in this context does not follow from existing results, and is open for all distances. RESULTS: We settle here the complexity of several genome median and halving problems, including a surprising polynomial result for the breakpoint median and guided halving problems in genomes with circular and linear chromosomes, showing that the multichromosomal problem is actually easier than the unichromosomal problem. Still other variants of these problems are NP-complete, including the DCJ double distance problem, previously mentioned as an open question. We list the remaining open problems. CONCLUSION: This theoretical study clears up a wide swathe of the algorithmical study of genome rearrangements with multiple multichromosomal genomes. |
format | Text |
id | pubmed-2683817 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26838172009-05-19 Multichromosomal median and halving problems under different genomic distances Tannier, Eric Zheng, Chunfang Sankoff, David BMC Bioinformatics Methodology Article BACKGROUND: Genome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The complexity of the median problem for unichromosomal genomes (permutations) has been settled for both the breakpoint distance and the reversal distance. Although the multichromosomal case has often been assumed to be a simple generalization of the unichromosomal case, it is also a relaxation so that complexity in this context does not follow from existing results, and is open for all distances. RESULTS: We settle here the complexity of several genome median and halving problems, including a surprising polynomial result for the breakpoint median and guided halving problems in genomes with circular and linear chromosomes, showing that the multichromosomal problem is actually easier than the unichromosomal problem. Still other variants of these problems are NP-complete, including the DCJ double distance problem, previously mentioned as an open question. We list the remaining open problems. CONCLUSION: This theoretical study clears up a wide swathe of the algorithmical study of genome rearrangements with multiple multichromosomal genomes. BioMed Central 2009-04-22 /pmc/articles/PMC2683817/ /pubmed/19386099 http://dx.doi.org/10.1186/1471-2105-10-120 Text en Copyright © 2009 Tannier et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Tannier, Eric Zheng, Chunfang Sankoff, David Multichromosomal median and halving problems under different genomic distances |
title | Multichromosomal median and halving problems under different genomic distances |
title_full | Multichromosomal median and halving problems under different genomic distances |
title_fullStr | Multichromosomal median and halving problems under different genomic distances |
title_full_unstemmed | Multichromosomal median and halving problems under different genomic distances |
title_short | Multichromosomal median and halving problems under different genomic distances |
title_sort | multichromosomal median and halving problems under different genomic distances |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683817/ https://www.ncbi.nlm.nih.gov/pubmed/19386099 http://dx.doi.org/10.1186/1471-2105-10-120 |
work_keys_str_mv | AT tanniereric multichromosomalmedianandhalvingproblemsunderdifferentgenomicdistances AT zhengchunfang multichromosomalmedianandhalvingproblemsunderdifferentgenomicdistances AT sankoffdavid multichromosomalmedianandhalvingproblemsunderdifferentgenomicdistances |