Cargando…
Predicting linear B‐cell epitopes using string kernels
The identification and characterization of B‐cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B‐cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifi...
Autores principales: | EL‐Manzalawy, Yasser, Dobbs, Drena, Honavar, Vasant |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd.
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683948/ https://www.ncbi.nlm.nih.gov/pubmed/18496882 http://dx.doi.org/10.1002/jmr.893 |
Ejemplares similares
-
On Evaluating MHC-II Binding Peptide Prediction Methods
por: EL-Manzalawy, Yasser, et al.
Publicado: (2008) -
Recent advances in B-cell epitope prediction methods
por: EL-Manzalawy, Yasser, et al.
Publicado: (2010) -
Predicting protein-protein interface residues using local surface structural similarity
por: Jordan, Rafael A, et al.
Publicado: (2012) -
Partner‐specific prediction of RNA‐binding residues in proteins: A critical assessment
por: Jung, Yong, et al.
Publicado: (2018) -
RNABindRPlus: A Predictor that Combines Machine Learning and Sequence Homology-Based Methods to Improve the Reliability of Predicted RNA-Binding Residues in Proteins
por: Walia, Rasna R., et al.
Publicado: (2014)