Cargando…
NKX2-5 Regulates the Expression of β-Catenin and GATA4 in Ventricular Myocytes
BACKGROUND: The molecular pathway that controls cardiogenesis is temporally and spatially regulated by master transcriptional regulators such as NKX2-5, Isl1, MEF2C, GATA4, and β-catenin. The interplay between these factors and their downstream targets are not completely understood. Here, we studied...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684637/ https://www.ncbi.nlm.nih.gov/pubmed/19479054 http://dx.doi.org/10.1371/journal.pone.0005698 |
Sumario: | BACKGROUND: The molecular pathway that controls cardiogenesis is temporally and spatially regulated by master transcriptional regulators such as NKX2-5, Isl1, MEF2C, GATA4, and β-catenin. The interplay between these factors and their downstream targets are not completely understood. Here, we studied regulation of β-catenin and GATA4 by NKX2-5 in human fetal cardiac myocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using antisense inhibition we disrupted the expression of NKX2-5 and studied changes in expression of cardiac-associated genes. Down-regulation of NKX2-5 resulted in increased β-catenin while GATA4 was decreased. We demonstrated that this regulation was conferred by binding of NKX2-5 to specific elements (NKEs) in the promoter region of the β-catenin and GATA4 genes. Using promoter-luciferase reporter assay combined with mutational analysis of the NKEs we demonstrated that the identified NKX2-5 binding sites were essential for the suppression of β-catenin, and upregulation of GATA4 by NKX2-5. CONCLUSIONS: This study suggests that NKX2-5 modulates the β-catenin and GATA4 transcriptional activities in developing human cardiac myocytes. |
---|