Cargando…
A kernel-based integration of genome-wide data for clinical decision support
BACKGROUND: Although microarray technology allows the investigation of the transcriptomic make-up of a tumor in one experiment, the transcriptome does not completely reflect the underlying biology due to alternative splicing, post-translational modifications, as well as the influence of pathological...
Autores principales: | Daemen, Anneleen, Gevaert, Olivier, Ojeda, Fabian, Debucquoy, Annelies, Suykens, Johan AK, Sempoux, Christine, Machiels, Jean-Pascal, Haustermans, Karin, De Moor, Bart |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684660/ https://www.ncbi.nlm.nih.gov/pubmed/19356222 http://dx.doi.org/10.1186/gm39 |
Ejemplares similares
-
Improved Microarray-Based Decision Support with Graph Encoded Interactome Data
por: Daemen, Anneleen, et al.
Publicado: (2010) -
L(2)-norm multiple kernel learning and its application to biomedical data fusion
por: Yu, Shi, et al.
Publicado: (2010) -
A taxonomy of epithelial human cancer and their metastases
por: Gevaert, Olivier, et al.
Publicado: (2009) -
Regularization, optimization, kernels, and support vector machines
por: Suykens, Johan A K, et al.
Publicado: (2015) -
Predicting receptor-ligand pairs through kernel learning
por: Iacucci, Ernesto, et al.
Publicado: (2011)