Cargando…
Mammographic Mass Detection Using a Mass Template
OBJECTIVE: The purpose of this study was to develop a new method for automated mass detection in digital mammographic images using templates. MATERIALS AND METHODS: Masses were detected using a two steps process. First, the pixels in the mammogram images were scanned in 8 directions, and regions of...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Korean Radiological Society
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684968/ https://www.ncbi.nlm.nih.gov/pubmed/16374079 http://dx.doi.org/10.3348/kjr.2005.6.4.221 |
_version_ | 1782167269198004224 |
---|---|
author | Özekes, Serhat Osman, Onur Çamurcu, A.Yilmaz |
author_facet | Özekes, Serhat Osman, Onur Çamurcu, A.Yilmaz |
author_sort | Özekes, Serhat |
collection | PubMed |
description | OBJECTIVE: The purpose of this study was to develop a new method for automated mass detection in digital mammographic images using templates. MATERIALS AND METHODS: Masses were detected using a two steps process. First, the pixels in the mammogram images were scanned in 8 directions, and regions of interest (ROI) were identified using various thresholds. Then, a mass template was used to categorize the ROI as true masses or non-masses based on their morphologies. Each pixel of a ROI was scanned with a mass template to determine whether there was a shape (part of a ROI) similar to the mass in the template. The similarity was controlled using two thresholds. If a shape was detected, then the coordinates of the shape were recorded as part of a true mass. To test the system's efficiency, we applied this process to 52 mammogram images from the Mammographic Image Analysis Society (MIAS) database. RESULTS: Three hundred and thirty-two ROI were identified using the ROI specification methods. These ROI were classified using three templates whose diameters were 10, 20 and 30 pixels. The results of this experiment showed that using the templates with these diameters achieved sensitivities of 93%, 90% and 81% with 1.3, 0.7 and 0.33 false positives per image respectively. CONCLUSION: These results indicate that the detection performance of this template based algorithm is satisfactory, and may improve the performance of computer-aided analysis of mammographic images and early diagnosis of mammographic masses. |
format | Text |
id | pubmed-2684968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | The Korean Radiological Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-26849682009-05-29 Mammographic Mass Detection Using a Mass Template Özekes, Serhat Osman, Onur Çamurcu, A.Yilmaz Korean J Radiol Original Article OBJECTIVE: The purpose of this study was to develop a new method for automated mass detection in digital mammographic images using templates. MATERIALS AND METHODS: Masses were detected using a two steps process. First, the pixels in the mammogram images were scanned in 8 directions, and regions of interest (ROI) were identified using various thresholds. Then, a mass template was used to categorize the ROI as true masses or non-masses based on their morphologies. Each pixel of a ROI was scanned with a mass template to determine whether there was a shape (part of a ROI) similar to the mass in the template. The similarity was controlled using two thresholds. If a shape was detected, then the coordinates of the shape were recorded as part of a true mass. To test the system's efficiency, we applied this process to 52 mammogram images from the Mammographic Image Analysis Society (MIAS) database. RESULTS: Three hundred and thirty-two ROI were identified using the ROI specification methods. These ROI were classified using three templates whose diameters were 10, 20 and 30 pixels. The results of this experiment showed that using the templates with these diameters achieved sensitivities of 93%, 90% and 81% with 1.3, 0.7 and 0.33 false positives per image respectively. CONCLUSION: These results indicate that the detection performance of this template based algorithm is satisfactory, and may improve the performance of computer-aided analysis of mammographic images and early diagnosis of mammographic masses. The Korean Radiological Society 2005 2005-12-31 /pmc/articles/PMC2684968/ /pubmed/16374079 http://dx.doi.org/10.3348/kjr.2005.6.4.221 Text en Copyright © 2005 The Korean Radiological Society http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Özekes, Serhat Osman, Onur Çamurcu, A.Yilmaz Mammographic Mass Detection Using a Mass Template |
title | Mammographic Mass Detection Using a Mass Template |
title_full | Mammographic Mass Detection Using a Mass Template |
title_fullStr | Mammographic Mass Detection Using a Mass Template |
title_full_unstemmed | Mammographic Mass Detection Using a Mass Template |
title_short | Mammographic Mass Detection Using a Mass Template |
title_sort | mammographic mass detection using a mass template |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684968/ https://www.ncbi.nlm.nih.gov/pubmed/16374079 http://dx.doi.org/10.3348/kjr.2005.6.4.221 |
work_keys_str_mv | AT ozekesserhat mammographicmassdetectionusingamasstemplate AT osmanonur mammographicmassdetectionusingamasstemplate AT camurcuayilmaz mammographicmassdetectionusingamasstemplate |