Cargando…
Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis
Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685981/ https://www.ncbi.nlm.nih.gov/pubmed/19492049 http://dx.doi.org/10.1371/journal.pone.0005775 |
_version_ | 1782167366294044672 |
---|---|
author | Hu, Valerie W. Nguyen, AnhThu Kim, Kyung Soon Steinberg, Mara E. Sarachana, Tewarit Scully, Michele A. Soldin, Steven J. Luu, Truong Lee, Norman H. |
author_facet | Hu, Valerie W. Nguyen, AnhThu Kim, Kyung Soon Steinberg, Mara E. Sarachana, Tewarit Scully, Michele A. Soldin, Steven J. Luu, Truong Lee, Norman H. |
author_sort | Hu, Valerie W. |
collection | PubMed |
description | Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects ∼4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism. |
format | Text |
id | pubmed-2685981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26859812009-06-03 Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis Hu, Valerie W. Nguyen, AnhThu Kim, Kyung Soon Steinberg, Mara E. Sarachana, Tewarit Scully, Michele A. Soldin, Steven J. Luu, Truong Lee, Norman H. PLoS One Research Article Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects ∼4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism. Public Library of Science 2009-06-03 /pmc/articles/PMC2685981/ /pubmed/19492049 http://dx.doi.org/10.1371/journal.pone.0005775 Text en Hu et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hu, Valerie W. Nguyen, AnhThu Kim, Kyung Soon Steinberg, Mara E. Sarachana, Tewarit Scully, Michele A. Soldin, Steven J. Luu, Truong Lee, Norman H. Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis |
title | Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis |
title_full | Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis |
title_fullStr | Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis |
title_full_unstemmed | Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis |
title_short | Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis |
title_sort | gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685981/ https://www.ncbi.nlm.nih.gov/pubmed/19492049 http://dx.doi.org/10.1371/journal.pone.0005775 |
work_keys_str_mv | AT huvaleriew geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT nguyenanhthu geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT kimkyungsoon geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT steinbergmarae geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT sarachanatewarit geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT scullymichelea geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT soldinstevenj geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT luutruong geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis AT leenormanh geneexpressionprofilingoflymphoblastsfromautisticandnonaffectedsibpairsalteredpathwaysinneuronaldevelopmentandsteroidbiosynthesis |