Cargando…
Integrating Statistical Predictions and Experimental Verifications for Enhancing Protein-Chemical Interaction Predictions in Virtual Screening
Predictions of interactions between target proteins and potential leads are of great benefit in the drug discovery process. We present a comprehensively applicable statistical prediction method for interactions between any proteins and chemical compounds, which requires only protein sequence data an...
Autores principales: | Nagamine, Nobuyoshi, Shirakawa, Takayuki, Minato, Yusuke, Torii, Kentaro, Kobayashi, Hiroki, Imoto, Masaya, Sakakibara, Yasubumi |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685987/ https://www.ncbi.nlm.nih.gov/pubmed/19503826 http://dx.doi.org/10.1371/journal.pcbi.1000397 |
Ejemplares similares
-
Comprehensive predictions of target proteins based on protein-chemical interaction using virtual screening and experimental verifications
por: Kobayashi, Hiroki, et al.
Publicado: (2012) -
Identifying cooperative transcriptional regulations using protein–protein interactions
por: Nagamine, Nobuyoshi, et al.
Publicado: (2005) -
An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds
por: Nakamura, Masaomi, et al.
Publicado: (2012) -
Robust and accurate prediction of noncoding RNAs from aligned sequences
por: Saito, Yutaka, et al.
Publicado: (2010) -
RNA secondary structure prediction using deep learning with thermodynamic integration
por: Sato, Kengo, et al.
Publicado: (2021)