Cargando…
High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study
BACKGROUND: Autoclaving, heat, irradiation or chemical detergents are used to disinfect autografts, allografts and biomaterials for tissue reconstruction. These methods are often associated with deterioration of mechanical, physical, and biological properties of the bone grafts and synthetic implant...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687106/ https://www.ncbi.nlm.nih.gov/pubmed/19516918 http://dx.doi.org/10.2174/1874325000903010001 |
_version_ | 1782167519606341632 |
---|---|
author | Gollwitzer, Hans Mittelmeier, Wolfram Brendle, Monika Weber, Patrick Miethke, Thomas Hofmann, Gunther O Gerdesmeyer, Ludger Schauwecker, Johannes Diehl, Peter |
author_facet | Gollwitzer, Hans Mittelmeier, Wolfram Brendle, Monika Weber, Patrick Miethke, Thomas Hofmann, Gunther O Gerdesmeyer, Ludger Schauwecker, Johannes Diehl, Peter |
author_sort | Gollwitzer, Hans |
collection | PubMed |
description | BACKGROUND: Autoclaving, heat, irradiation or chemical detergents are used to disinfect autografts, allografts and biomaterials for tissue reconstruction. These methods are often associated with deterioration of mechanical, physical, and biological properties of the bone grafts and synthetic implants. High hydrostatic pressure has been proposed as a novel method preserving biomechanical and biological properties of bone, tendon and cartilage. This is the first study to assess the inactivation of clinically relevant bacteria on biomaterials and human bone by high hydrostatic pressure. METHODS: Bacterial suspensions of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecium, implants covered with infected blood, human bone infected in vitro, and biopsies of patients with chronic osteomyelitis were subjected to different protocols of high hydrostatic pressure up to 600 MPa. Bacterial survival after high hydrostatic pressure treatment was determined and compared with bacterial growth in untreated controls. RESULTS: S. aureus and P. aeruginosa in suspension were completely inactivated by high hydrostatic pressure (> 5log levels), whereas E. faecium showed barotolerance up to 600 MPa. Blood and adherence to metal implants did not significantly alter inactivation of bacteria, and complete disinfection was achieved with barotolerant bacteria (S. aureus and P. aeruginosa). However, osteoarthritic bone demonstrated a non-homogeneous baroprotective effect, with single bone samples resistant to treatment resulting in unaltered bacterial growth, and complete disinfection of artificially infected bone specimens was achieved in 66% for S. aureus, 60% for P. aeruginosa and 0% for E. faecium. Human bone samples of patients with chronic osteomyelitis could be completely disinfected in 2 of 37 cases. CONCLUSION: High hydrostatic pressure offers new perspectives for disinfection of sensitive biomaterials and bone grafts, and contamination by blood did not significantly affect bacterial inactivation rates. However, a significant baroprotective effect was demonstrated in bone. Effectiveness is currently limited to colonization and / or infection with barosensitive micro-organisms. |
format | Text |
id | pubmed-2687106 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Bentham Open |
record_format | MEDLINE/PubMed |
spelling | pubmed-26871062009-06-09 High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study Gollwitzer, Hans Mittelmeier, Wolfram Brendle, Monika Weber, Patrick Miethke, Thomas Hofmann, Gunther O Gerdesmeyer, Ludger Schauwecker, Johannes Diehl, Peter Open Orthop J Article BACKGROUND: Autoclaving, heat, irradiation or chemical detergents are used to disinfect autografts, allografts and biomaterials for tissue reconstruction. These methods are often associated with deterioration of mechanical, physical, and biological properties of the bone grafts and synthetic implants. High hydrostatic pressure has been proposed as a novel method preserving biomechanical and biological properties of bone, tendon and cartilage. This is the first study to assess the inactivation of clinically relevant bacteria on biomaterials and human bone by high hydrostatic pressure. METHODS: Bacterial suspensions of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecium, implants covered with infected blood, human bone infected in vitro, and biopsies of patients with chronic osteomyelitis were subjected to different protocols of high hydrostatic pressure up to 600 MPa. Bacterial survival after high hydrostatic pressure treatment was determined and compared with bacterial growth in untreated controls. RESULTS: S. aureus and P. aeruginosa in suspension were completely inactivated by high hydrostatic pressure (> 5log levels), whereas E. faecium showed barotolerance up to 600 MPa. Blood and adherence to metal implants did not significantly alter inactivation of bacteria, and complete disinfection was achieved with barotolerant bacteria (S. aureus and P. aeruginosa). However, osteoarthritic bone demonstrated a non-homogeneous baroprotective effect, with single bone samples resistant to treatment resulting in unaltered bacterial growth, and complete disinfection of artificially infected bone specimens was achieved in 66% for S. aureus, 60% for P. aeruginosa and 0% for E. faecium. Human bone samples of patients with chronic osteomyelitis could be completely disinfected in 2 of 37 cases. CONCLUSION: High hydrostatic pressure offers new perspectives for disinfection of sensitive biomaterials and bone grafts, and contamination by blood did not significantly affect bacterial inactivation rates. However, a significant baroprotective effect was demonstrated in bone. Effectiveness is currently limited to colonization and / or infection with barosensitive micro-organisms. Bentham Open 2009-01-29 /pmc/articles/PMC2687106/ /pubmed/19516918 http://dx.doi.org/10.2174/1874325000903010001 Text en © Gollwitzer et al.; License Bentham Open. http://creativecommons.org/licenses/by-nc/3.0/ This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
spellingShingle | Article Gollwitzer, Hans Mittelmeier, Wolfram Brendle, Monika Weber, Patrick Miethke, Thomas Hofmann, Gunther O Gerdesmeyer, Ludger Schauwecker, Johannes Diehl, Peter High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study |
title | High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study |
title_full | High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study |
title_fullStr | High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study |
title_full_unstemmed | High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study |
title_short | High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study |
title_sort | high hydrostatic pressure for disinfection of bone grafts and biomaterials: an experimental study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687106/ https://www.ncbi.nlm.nih.gov/pubmed/19516918 http://dx.doi.org/10.2174/1874325000903010001 |
work_keys_str_mv | AT gollwitzerhans highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT mittelmeierwolfram highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT brendlemonika highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT weberpatrick highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT miethkethomas highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT hofmanngunthero highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT gerdesmeyerludger highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT schauweckerjohannes highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy AT diehlpeter highhydrostaticpressurefordisinfectionofbonegraftsandbiomaterialsanexperimentalstudy |