Cargando…

Mechanisms of matrix metalloproteinase-2 (mmp-2) transcriptional repression by progesterone in jar choriocarcinoma cells

BACKGROUND: Although the MMP-2 promoter lacks a canonical progesterone response element (PRE), the hormone inhibits MMP-2 expression and is part of treatment protocols in gynecological invasive pathologies, including endometriosis and endometrial hyperplasia. This study aimed to explore the mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldman, Shlomit, Lovett, David H, Shalev, Eliezer
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687445/
https://www.ncbi.nlm.nih.gov/pubmed/19426551
http://dx.doi.org/10.1186/1477-7827-7-41
Descripción
Sumario:BACKGROUND: Although the MMP-2 promoter lacks a canonical progesterone response element (PRE), the hormone inhibits MMP-2 expression and is part of treatment protocols in gynecological invasive pathologies, including endometriosis and endometrial hyperplasia. This study aimed to explore the mechanism by which progesterone inhibits MMP-2 expression. METHODS: The effect of progesterone on MMP-2 expression in the JAR human choriocarcinoma cell line was analyzed by gelatin zymography. MMP-2 transcript expression was studied using Northern blot and semi-quantitative RT-PCR. Rat promoter deletion analysis, electrophoretic mobility shift and chromatin immuno-precipitation assays were performed in order to locate the DNA binding site and the transcription factors involved in MMP-2 regulation. RESULTS: Progesterone significantly decreased secretion of pro-MMP-2 and MMP-2 transcript expression level in a dose-dependent manner. Progesterone (1 microM) significantly decreased both human and rat MMP-2 promoter activity (80.1% +/- 0.3 and 81.3% +/- 0.23, respectively). Progesterone acts through the SP1 family transcription factors-binding site, located between -1433 and -1342 bp region from the transcriptional start site of the rat MMP-2 promoter, which are present in the orthologous human MMP-2 promoter. Progesterone receptor (PR), SP2, SP3 and SP4 proteins are constitutively bound to this consensus sequence. CONCLUSION: Progesterone reducesPR and SP4 binding to the MMP-2 promoter, thereby suppressing transcription. Progesterone also promotes SP4 degradation. These novel mechanisms of MMP-2 regulation by progesterone provide the biological rationale for the use of progesterone in clinical settings associated with increased MMP-2 expression.