Cargando…
Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation
Lipopolysaccharide (LPS), given in vivo, modulates opossum esophageal motor functions by inducing the inducible nitric oxide synthase (iNOS), which increases nitric oxide (NO) production. Superoxide, a NO scavenger, is generated during this endotoxemia. Superoxide is cleared by superoxide dismutase...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Yonsei University College of Medicine
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687632/ https://www.ncbi.nlm.nih.gov/pubmed/16642552 http://dx.doi.org/10.3349/ymj.2006.47.2.223 |
_version_ | 1782167556872732672 |
---|---|
author | Lee, Se-Joon Park, Hyojin Chang, Jin Hyuck Conklin, Jeffrey L |
author_facet | Lee, Se-Joon Park, Hyojin Chang, Jin Hyuck Conklin, Jeffrey L |
author_sort | Lee, Se-Joon |
collection | PubMed |
description | Lipopolysaccharide (LPS), given in vivo, modulates opossum esophageal motor functions by inducing the inducible nitric oxide synthase (iNOS), which increases nitric oxide (NO) production. Superoxide, a NO scavenger, is generated during this endotoxemia. Superoxide is cleared by superoxide dismutase (SOD) and catalase (CAT) to protect the physiological function of NO. This study examined whether lower esophageal sphincter (LES) motility, NO release, and iNOS and nitrotyrosine accumulation in the LES are affected by LPS in vitro. Muscle strips from the opossum LES were placed in tissue baths containing oxygenated Krebs buffer. NO release was measured with a chemiluminescence NOx analyzer, and Western blots were performed to analyze iNOS and nitrotyrosine production. The percent change in resting LES tone after a 6-hour exposure to LPS was significantly increased compared to pretreatment values. The percent LES relaxation upon electrical stimulation was significantly decreased in the control group at 6 hours, indicating that the LPS treatment had an effect. The NO concentration in the tissue bath of LPS-treated muscle without nerve stimulation was significantly less than that of LPS treatment combined with SOD/CAT or SOD/CAT alone. iNOS and nitrotyrosine were detectable and increased over time in the LES muscle of both the control and LPS-treated groups. Antioxidant enzymes may play a role in regulating NO-mediated neuromuscular functions in the LES. |
format | Text |
id | pubmed-2687632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Yonsei University College of Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-26876322009-06-04 Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation Lee, Se-Joon Park, Hyojin Chang, Jin Hyuck Conklin, Jeffrey L Yonsei Med J Original Article Lipopolysaccharide (LPS), given in vivo, modulates opossum esophageal motor functions by inducing the inducible nitric oxide synthase (iNOS), which increases nitric oxide (NO) production. Superoxide, a NO scavenger, is generated during this endotoxemia. Superoxide is cleared by superoxide dismutase (SOD) and catalase (CAT) to protect the physiological function of NO. This study examined whether lower esophageal sphincter (LES) motility, NO release, and iNOS and nitrotyrosine accumulation in the LES are affected by LPS in vitro. Muscle strips from the opossum LES were placed in tissue baths containing oxygenated Krebs buffer. NO release was measured with a chemiluminescence NOx analyzer, and Western blots were performed to analyze iNOS and nitrotyrosine production. The percent change in resting LES tone after a 6-hour exposure to LPS was significantly increased compared to pretreatment values. The percent LES relaxation upon electrical stimulation was significantly decreased in the control group at 6 hours, indicating that the LPS treatment had an effect. The NO concentration in the tissue bath of LPS-treated muscle without nerve stimulation was significantly less than that of LPS treatment combined with SOD/CAT or SOD/CAT alone. iNOS and nitrotyrosine were detectable and increased over time in the LES muscle of both the control and LPS-treated groups. Antioxidant enzymes may play a role in regulating NO-mediated neuromuscular functions in the LES. Yonsei University College of Medicine 2006-04-30 2006-04-30 /pmc/articles/PMC2687632/ /pubmed/16642552 http://dx.doi.org/10.3349/ymj.2006.47.2.223 Text en Copyright © 2006 The Yonsei University College of Medicine http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Lee, Se-Joon Park, Hyojin Chang, Jin Hyuck Conklin, Jeffrey L Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation |
title | Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation |
title_full | Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation |
title_fullStr | Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation |
title_full_unstemmed | Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation |
title_short | Generation of Nitric Oxide in the Opossum Lower Esophageal Sphincter during Physiological Experimentation |
title_sort | generation of nitric oxide in the opossum lower esophageal sphincter during physiological experimentation |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687632/ https://www.ncbi.nlm.nih.gov/pubmed/16642552 http://dx.doi.org/10.3349/ymj.2006.47.2.223 |
work_keys_str_mv | AT leesejoon generationofnitricoxideintheopossumloweresophagealsphincterduringphysiologicalexperimentation AT parkhyojin generationofnitricoxideintheopossumloweresophagealsphincterduringphysiologicalexperimentation AT changjinhyuck generationofnitricoxideintheopossumloweresophagealsphincterduringphysiologicalexperimentation AT conklinjeffreyl generationofnitricoxideintheopossumloweresophagealsphincterduringphysiologicalexperimentation |