Cargando…
Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells
BACKGROUND: Despite the prevalence and biological relevance of both signaling pathways and alternative pre-mRNA splicing, our knowledge of how intracellular signaling impacts on alternative splicing regulation remains fragmentary. We report a genome-wide analysis using splicing-sensitive microarrays...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687788/ https://www.ncbi.nlm.nih.gov/pubmed/19178699 http://dx.doi.org/10.1186/gb-2009-10-1-r11 |
_version_ | 1782167592898658304 |
---|---|
author | Hartmann, Britta Castelo, Robert Blanchette, Marco Boue, Stephanie Rio, Donald C Valcárcel, Juan |
author_facet | Hartmann, Britta Castelo, Robert Blanchette, Marco Boue, Stephanie Rio, Donald C Valcárcel, Juan |
author_sort | Hartmann, Britta |
collection | PubMed |
description | BACKGROUND: Despite the prevalence and biological relevance of both signaling pathways and alternative pre-mRNA splicing, our knowledge of how intracellular signaling impacts on alternative splicing regulation remains fragmentary. We report a genome-wide analysis using splicing-sensitive microarrays of changes in alternative splicing induced by activation of two distinct signaling pathways, insulin and wingless, in Drosophila cells in culture. RESULTS: Alternative splicing changes induced by insulin affect more than 150 genes and more than 50 genes are regulated by wingless activation. About 40% of the genes showing changes in alternative splicing also show regulation of mRNA levels, suggesting distinct but also significantly overlapping programs of transcriptional and post-transcriptional regulation. Distinct functional sets of genes are regulated by each pathway and, remarkably, a significant overlap is observed between functional categories of genes regulated transcriptionally and at the level of alternative splicing. Functions related to carbohydrate metabolism and cellular signaling are enriched among genes regulated by insulin and wingless, respectively. Computational searches identify pathway-specific sequence motifs enriched near regulated 5' splice sites. CONCLUSIONS: Taken together, our data indicate that signaling cascades trigger pathway-specific and biologically coherent regulatory programs of alternative splicing regulation. They also reveal that alternative splicing can provide a novel molecular mechanism for crosstalk between different signaling pathways. |
format | Text |
id | pubmed-2687788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26877882009-05-29 Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells Hartmann, Britta Castelo, Robert Blanchette, Marco Boue, Stephanie Rio, Donald C Valcárcel, Juan Genome Biol Research BACKGROUND: Despite the prevalence and biological relevance of both signaling pathways and alternative pre-mRNA splicing, our knowledge of how intracellular signaling impacts on alternative splicing regulation remains fragmentary. We report a genome-wide analysis using splicing-sensitive microarrays of changes in alternative splicing induced by activation of two distinct signaling pathways, insulin and wingless, in Drosophila cells in culture. RESULTS: Alternative splicing changes induced by insulin affect more than 150 genes and more than 50 genes are regulated by wingless activation. About 40% of the genes showing changes in alternative splicing also show regulation of mRNA levels, suggesting distinct but also significantly overlapping programs of transcriptional and post-transcriptional regulation. Distinct functional sets of genes are regulated by each pathway and, remarkably, a significant overlap is observed between functional categories of genes regulated transcriptionally and at the level of alternative splicing. Functions related to carbohydrate metabolism and cellular signaling are enriched among genes regulated by insulin and wingless, respectively. Computational searches identify pathway-specific sequence motifs enriched near regulated 5' splice sites. CONCLUSIONS: Taken together, our data indicate that signaling cascades trigger pathway-specific and biologically coherent regulatory programs of alternative splicing regulation. They also reveal that alternative splicing can provide a novel molecular mechanism for crosstalk between different signaling pathways. BioMed Central 2009 2009-01-29 /pmc/articles/PMC2687788/ /pubmed/19178699 http://dx.doi.org/10.1186/gb-2009-10-1-r11 Text en Copyright © 2009 Hartmann et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Hartmann, Britta Castelo, Robert Blanchette, Marco Boue, Stephanie Rio, Donald C Valcárcel, Juan Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells |
title | Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells |
title_full | Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells |
title_fullStr | Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells |
title_full_unstemmed | Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells |
title_short | Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells |
title_sort | global analysis of alternative splicing regulation by insulin and wingless signaling in drosophila cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687788/ https://www.ncbi.nlm.nih.gov/pubmed/19178699 http://dx.doi.org/10.1186/gb-2009-10-1-r11 |
work_keys_str_mv | AT hartmannbritta globalanalysisofalternativesplicingregulationbyinsulinandwinglesssignalingindrosophilacells AT castelorobert globalanalysisofalternativesplicingregulationbyinsulinandwinglesssignalingindrosophilacells AT blanchettemarco globalanalysisofalternativesplicingregulationbyinsulinandwinglesssignalingindrosophilacells AT bouestephanie globalanalysisofalternativesplicingregulationbyinsulinandwinglesssignalingindrosophilacells AT riodonaldc globalanalysisofalternativesplicingregulationbyinsulinandwinglesssignalingindrosophilacells AT valcarceljuan globalanalysisofalternativesplicingregulationbyinsulinandwinglesssignalingindrosophilacells |