Cargando…
Prediction of sub-cavity binding preferences using an adaptive physicochemical structure representation
Motivation: The ability to predict binding profiles for an arbitrary protein can significantly improve the areas of drug discovery, lead optimization and protein function prediction. At present, there are no successful algorithms capable of predicting binding profiles for novel proteins. Existing me...
Autores principales: | Wallach, Izhar, Lilien, Ryan H. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687958/ https://www.ncbi.nlm.nih.gov/pubmed/19478002 http://dx.doi.org/10.1093/bioinformatics/btp204 |
Ejemplares similares
-
From disease ontology to disease-ontology lite: statistical methods to adapt a general-purpose ontology for the test of gene-ontology associations
por: Du, Pan, et al.
Publicado: (2009) -
Predicting functionality of protein–DNA interactions by integrating diverse evidence
por: Ucar, Duygu, et al.
Publicado: (2009) -
Modeling stochasticity and robustness in gene regulatory networks
por: Garg, Abhishek, et al.
Publicado: (2009) -
Probabilistic retrieval and visualization of biologically relevant microarray experiments
por: Caldas, José, et al.
Publicado: (2009) -
Modeling interactions between adjacent nucleosomes improves genome-wide predictions of nucleosome occupancy
por: Lubliner, Shai, et al.
Publicado: (2009)