Cargando…
Modeling stochasticity and robustness in gene regulatory networks
Motivation: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for...
Autores principales: | Garg, Abhishek, Mohanram, Kartik, Di Cara, Alessandro, De Micheli, Giovanni, Xenarios, Ioannis |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687968/ https://www.ncbi.nlm.nih.gov/pubmed/19477975 http://dx.doi.org/10.1093/bioinformatics/btp214 |
Ejemplares similares
-
Constrained mixture estimation for analysis and robust classification of clinical time series
por: Costa, Ivan G., et al.
Publicado: (2009) -
A general computational method for robustness analysis with applications to synthetic gene networks
por: Rizk, Aurélien, et al.
Publicado: (2009) -
Grouped graphical Granger modeling for gene expression regulatory networks discovery
por: Lozano, Aurélie C., et al.
Publicado: (2009) -
Predicting functionality of protein–DNA interactions by integrating diverse evidence
por: Ucar, Duygu, et al.
Publicado: (2009) -
Probabilistic retrieval and visualization of biologically relevant microarray experiments
por: Caldas, José, et al.
Publicado: (2009)