Cargando…

Impaired vascular responses to parasympathetic nerve stimulation and muscarinic receptor activation in the submandibular gland in nonobese diabetic mice

INTRODUCTION: Decreased vascular responses to salivary gland stimulation are observed in Sjögren's syndrome patients. We investigate whether impaired vascular responses to parasympathetic stimulation and muscarinic receptor activation in salivary glands parallels hyposalivation in an experiment...

Descripción completa

Detalles Bibliográficos
Autores principales: Berggreen, Ellen, Nyløkken, Krister, Delaleu, Nicolas, Hajdaragic-Ibricevic, Hamijeta, Jonsson, Malin V
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688250/
https://www.ncbi.nlm.nih.gov/pubmed/19200376
http://dx.doi.org/10.1186/ar2609
Descripción
Sumario:INTRODUCTION: Decreased vascular responses to salivary gland stimulation are observed in Sjögren's syndrome patients. We investigate whether impaired vascular responses to parasympathetic stimulation and muscarinic receptor activation in salivary glands parallels hyposalivation in an experimental model for Sjögren's syndrome. METHODS: Blood flow responses in the salivary glands were measured by laser Doppler flowmeter. Muscarinic receptor activation was followed by saliva secretion measurements. Nitric oxide synthesis-mediated blood flow responses were studied after administration of a nitric oxide synthase inhibitor. Glandular autonomic nerves and muscarinic 3 receptor distributions were also investigated. RESULTS: Maximal blood flow responses to parasympathetic stimulation and muscarinic receptor activation were significantly lower in nonobese diabetic (NOD) mice compared with BALB/c mice, coinciding with impaired saliva secretion in nonobese diabetic mice (P < 0.005). Nitric oxide synthase inhibitor had less effect on blood flow responses after parasympathetic nerve stimulation in nonobese diabetic mice compared with BALB/c mice (P < 0.02). In nonobese diabetic mice, salivary gland parasympathetic nerve fibres were absent in areas of focal infiltrates. Muscarinic 3 receptor might be localized in the blood vessel walls of salivary glands. CONCLUSIONS: Impaired vasodilatation in response to parasympathetic nerve stimulation and muscarinic receptor activation may contribute to hyposalivation observed in nonobese diabetic mice. Reduced nitric oxide signalling after parasympathetic nerve stimulation may contribute in part to the impaired blood flow responses. The possibility of muscarinic 3 receptor in the vasculature supports the notion that muscarinic 3 receptor autoantibodies present in nonobese diabetic mice might impair the fluid transport required for salivation. Parasympathetic nerves were absent in areas of focal infiltrates, whereas a normal distribution was found within glandular epithelium. TRIAL REGISTRATION: The trial registration number for the present study is 79-04/BBB, given by the Norwegian State Commission for Laboratory Animals.