Cargando…
Fast genomic μChIP-chip from 1,000 cells
Genome-wide location analysis of histone modifications and transcription factor binding relies on chromatin immunoprecipitation (ChIP) assays. These assays are, however, time-consuming and require large numbers of cells, hindering their application to the analysis of many interesting cell types. We...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688267/ https://www.ncbi.nlm.nih.gov/pubmed/19208222 http://dx.doi.org/10.1186/gb-2009-10-2-r13 |
Sumario: | Genome-wide location analysis of histone modifications and transcription factor binding relies on chromatin immunoprecipitation (ChIP) assays. These assays are, however, time-consuming and require large numbers of cells, hindering their application to the analysis of many interesting cell types. We report here a fast microChIP (μChIP) assay for 1,000 cells in combination with microarrays to produce genome-scale surveys of histone modifications. μChIP-chip reliably reproduces data obtained by large-scale assays: H3K9ac and H3K9m3 enrichment profiles are conserved and nucleosome-free regions are revealed. |
---|