Cargando…
PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data
Personal-genomics endeavors, such as the 1000 Genomes project, are generating maps of genomic structural variants by analyzing ends of massively sequenced genome fragments. To process these we developed Paired-End Mapper (PEMer; ). This comprises an analysis pipeline, compatible with several next-ge...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688268/ https://www.ncbi.nlm.nih.gov/pubmed/19236709 http://dx.doi.org/10.1186/gb-2009-10-2-r23 |
_version_ | 1782167689538568192 |
---|---|
author | Korbel, Jan O Abyzov, Alexej Mu, Xinmeng Jasmine Carriero, Nicholas Cayting, Philip Zhang, Zhengdong Snyder, Michael Gerstein, Mark B |
author_facet | Korbel, Jan O Abyzov, Alexej Mu, Xinmeng Jasmine Carriero, Nicholas Cayting, Philip Zhang, Zhengdong Snyder, Michael Gerstein, Mark B |
author_sort | Korbel, Jan O |
collection | PubMed |
description | Personal-genomics endeavors, such as the 1000 Genomes project, are generating maps of genomic structural variants by analyzing ends of massively sequenced genome fragments. To process these we developed Paired-End Mapper (PEMer; ). This comprises an analysis pipeline, compatible with several next-generation sequencing platforms; simulation-based error models, yielding confidence-values for each structural variant; and a back-end database. The simulations demonstrated high structural variant reconstruction efficiency for PEMer's coverage-adjusted multi-cutoff scoring-strategy and showed its relative insensitivity to base-calling errors. |
format | Text |
id | pubmed-2688268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26882682009-05-29 PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data Korbel, Jan O Abyzov, Alexej Mu, Xinmeng Jasmine Carriero, Nicholas Cayting, Philip Zhang, Zhengdong Snyder, Michael Gerstein, Mark B Genome Biol Software Personal-genomics endeavors, such as the 1000 Genomes project, are generating maps of genomic structural variants by analyzing ends of massively sequenced genome fragments. To process these we developed Paired-End Mapper (PEMer; ). This comprises an analysis pipeline, compatible with several next-generation sequencing platforms; simulation-based error models, yielding confidence-values for each structural variant; and a back-end database. The simulations demonstrated high structural variant reconstruction efficiency for PEMer's coverage-adjusted multi-cutoff scoring-strategy and showed its relative insensitivity to base-calling errors. BioMed Central 2009 2009-02-23 /pmc/articles/PMC2688268/ /pubmed/19236709 http://dx.doi.org/10.1186/gb-2009-10-2-r23 Text en Copyright © 2009 Korbel et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Korbel, Jan O Abyzov, Alexej Mu, Xinmeng Jasmine Carriero, Nicholas Cayting, Philip Zhang, Zhengdong Snyder, Michael Gerstein, Mark B PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data |
title | PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data |
title_full | PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data |
title_fullStr | PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data |
title_full_unstemmed | PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data |
title_short | PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data |
title_sort | pemer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688268/ https://www.ncbi.nlm.nih.gov/pubmed/19236709 http://dx.doi.org/10.1186/gb-2009-10-2-r23 |
work_keys_str_mv | AT korbeljano pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata AT abyzovalexej pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata AT muxinmengjasmine pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata AT carrieronicholas pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata AT caytingphilip pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata AT zhangzhengdong pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata AT snydermichael pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata AT gersteinmarkb pemeracomputationalframeworkwithsimulationbasederrormodelsforinferringgenomicstructuralvariantsfrommassivepairedendsequencingdata |