Cargando…
Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
BACKGROUND: Organisms are able to anticipate changes in the daily environment with an internal oscillator know as the circadian clock. Transcription is an important mechanism in maintaining these oscillations. Here we explore, using whole genome tiling arrays, the extent of rhythmic expression patte...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688271/ https://www.ncbi.nlm.nih.gov/pubmed/19210792 http://dx.doi.org/10.1186/gb-2009-10-2-r17 |
_version_ | 1782167690235871232 |
---|---|
author | Hazen, Samuel P Naef, Felix Quisel, Tom Gendron, Joshua M Chen, Huaming Ecker, Joseph R Borevitz, Justin O Kay, Steve A |
author_facet | Hazen, Samuel P Naef, Felix Quisel, Tom Gendron, Joshua M Chen, Huaming Ecker, Joseph R Borevitz, Justin O Kay, Steve A |
author_sort | Hazen, Samuel P |
collection | PubMed |
description | BACKGROUND: Organisms are able to anticipate changes in the daily environment with an internal oscillator know as the circadian clock. Transcription is an important mechanism in maintaining these oscillations. Here we explore, using whole genome tiling arrays, the extent of rhythmic expression patterns genome-wide, with an unbiased analysis of coding and noncoding regions of the Arabidopsis genome. RESULTS: As in previous studies, we detected a circadian rhythm for approximately 25% of the protein coding genes in the genome. With an unbiased interrogation of the genome, extensive rhythmic introns were detected predominantly in phase with adjacent rhythmic exons, creating a transcript that, if translated, would be expected to produce a truncated protein. In some cases, such as the MYB transcription factor AT2G20400, an intron was found to exhibit a circadian rhythm while the remainder of the transcript was otherwise arrhythmic. In addition to several known noncoding transcripts, including microRNA, trans-acting short interfering RNA, and small nucleolar RNA, greater than one thousand intergenic regions were detected as circadian clock regulated, many of which have no predicted function, either coding or noncoding. Nearly 7% of the protein coding genes produced rhythmic antisense transcripts, often for genes whose sense strand was not similarly rhythmic. CONCLUSIONS: This study revealed widespread circadian clock regulation of the Arabidopsis genome extending well beyond the protein coding transcripts measured to date. This suggests a greater level of structural and temporal dynamics than previously known. |
format | Text |
id | pubmed-2688271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26882712009-05-29 Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays Hazen, Samuel P Naef, Felix Quisel, Tom Gendron, Joshua M Chen, Huaming Ecker, Joseph R Borevitz, Justin O Kay, Steve A Genome Biol Research BACKGROUND: Organisms are able to anticipate changes in the daily environment with an internal oscillator know as the circadian clock. Transcription is an important mechanism in maintaining these oscillations. Here we explore, using whole genome tiling arrays, the extent of rhythmic expression patterns genome-wide, with an unbiased analysis of coding and noncoding regions of the Arabidopsis genome. RESULTS: As in previous studies, we detected a circadian rhythm for approximately 25% of the protein coding genes in the genome. With an unbiased interrogation of the genome, extensive rhythmic introns were detected predominantly in phase with adjacent rhythmic exons, creating a transcript that, if translated, would be expected to produce a truncated protein. In some cases, such as the MYB transcription factor AT2G20400, an intron was found to exhibit a circadian rhythm while the remainder of the transcript was otherwise arrhythmic. In addition to several known noncoding transcripts, including microRNA, trans-acting short interfering RNA, and small nucleolar RNA, greater than one thousand intergenic regions were detected as circadian clock regulated, many of which have no predicted function, either coding or noncoding. Nearly 7% of the protein coding genes produced rhythmic antisense transcripts, often for genes whose sense strand was not similarly rhythmic. CONCLUSIONS: This study revealed widespread circadian clock regulation of the Arabidopsis genome extending well beyond the protein coding transcripts measured to date. This suggests a greater level of structural and temporal dynamics than previously known. BioMed Central 2009 2009-02-11 /pmc/articles/PMC2688271/ /pubmed/19210792 http://dx.doi.org/10.1186/gb-2009-10-2-r17 Text en Copyright © 2009 Hazen et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Hazen, Samuel P Naef, Felix Quisel, Tom Gendron, Joshua M Chen, Huaming Ecker, Joseph R Borevitz, Justin O Kay, Steve A Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays |
title | Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays |
title_full | Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays |
title_fullStr | Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays |
title_full_unstemmed | Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays |
title_short | Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays |
title_sort | exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688271/ https://www.ncbi.nlm.nih.gov/pubmed/19210792 http://dx.doi.org/10.1186/gb-2009-10-2-r17 |
work_keys_str_mv | AT hazensamuelp exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays AT naeffelix exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays AT quiseltom exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays AT gendronjoshuam exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays AT chenhuaming exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays AT eckerjosephr exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays AT borevitzjustino exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays AT kaystevea exploringthetranscriptionallandscapeofplantcircadianrhythmsusinggenometilingarrays |