Cargando…

Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine

BACKGROUND: Laboratory tests for routine drug of abuse and toxicology (DOA/Tox) screening, often used in emergency medicine, generally utilize antibody-based tests (immunoassays) to detect classes of drugs such as amphetamines, barbiturates, benzodiazepines, opiates, and tricyclic antidepressants, o...

Descripción completa

Detalles Bibliográficos
Autores principales: Krasowski, Matthew D, Pizon, Anthony F, Siam, Mohamed G, Giannoutsos, Spiros, Iyer, Manisha, Ekins, Sean
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688477/
https://www.ncbi.nlm.nih.gov/pubmed/19400959
http://dx.doi.org/10.1186/1471-227X-9-5
_version_ 1782167705079513088
author Krasowski, Matthew D
Pizon, Anthony F
Siam, Mohamed G
Giannoutsos, Spiros
Iyer, Manisha
Ekins, Sean
author_facet Krasowski, Matthew D
Pizon, Anthony F
Siam, Mohamed G
Giannoutsos, Spiros
Iyer, Manisha
Ekins, Sean
author_sort Krasowski, Matthew D
collection PubMed
description BACKGROUND: Laboratory tests for routine drug of abuse and toxicology (DOA/Tox) screening, often used in emergency medicine, generally utilize antibody-based tests (immunoassays) to detect classes of drugs such as amphetamines, barbiturates, benzodiazepines, opiates, and tricyclic antidepressants, or individual drugs such as cocaine, methadone, and phencyclidine. A key factor in assay sensitivity and specificity is the drugs or drug metabolites that were used as antigenic targets to generate the assay antibodies. All DOA/Tox screening immunoassays can be limited by false positives caused by cross-reactivity from structurally related compounds. For immunoassays targeted at a particular class of drugs, there can also be false negatives if there is failure to detect some drugs or their metabolites within that class. METHODS: Molecular similarity analysis, a computational method commonly used in drug discovery, was used to calculate structural similarity of a wide range of clinically relevant compounds (prescription and over-the-counter medications, illicit drugs, and clinically significant metabolites) to the target ('antigenic') molecules of DOA/Tox screening tests. These results were compared with cross-reactivity data in the package inserts of immunoassays marketed for clinical testing. The causes for false positives for phencyclidine and tricyclic antidepressant screening immunoassays were investigated at the authors' medical center using gas chromatography/mass spectrometry as a confirmatory method. RESULTS: The results illustrate three major challenges for routine DOA/Tox screening immunoassays used in emergency medicine. First, for some classes of drugs, the structural diversity of common drugs within each class has been increasing, thereby making it difficult for a single assay to detect all compounds without compromising specificity. Second, for some screening assays, common 'out-of-class' drugs may be structurally similar to the target compound so that they account for a high frequency of false positives. Illustrating this point, at the authors' medical center, the majority of positive screening results for phencyclidine and tricyclic antidepressants assays were explained by out-of-class drugs. Third, different manufacturers have adopted varying approaches to marketed immunoassays, leading to substantial inter-assay variability. CONCLUSION: The expanding structural diversity of drugs presents a difficult challenge for routine DOA/Tox screening that limit the clinical utility of these tests in the emergency medicine setting.
format Text
id pubmed-2688477
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26884772009-05-30 Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine Krasowski, Matthew D Pizon, Anthony F Siam, Mohamed G Giannoutsos, Spiros Iyer, Manisha Ekins, Sean BMC Emerg Med Research Article BACKGROUND: Laboratory tests for routine drug of abuse and toxicology (DOA/Tox) screening, often used in emergency medicine, generally utilize antibody-based tests (immunoassays) to detect classes of drugs such as amphetamines, barbiturates, benzodiazepines, opiates, and tricyclic antidepressants, or individual drugs such as cocaine, methadone, and phencyclidine. A key factor in assay sensitivity and specificity is the drugs or drug metabolites that were used as antigenic targets to generate the assay antibodies. All DOA/Tox screening immunoassays can be limited by false positives caused by cross-reactivity from structurally related compounds. For immunoassays targeted at a particular class of drugs, there can also be false negatives if there is failure to detect some drugs or their metabolites within that class. METHODS: Molecular similarity analysis, a computational method commonly used in drug discovery, was used to calculate structural similarity of a wide range of clinically relevant compounds (prescription and over-the-counter medications, illicit drugs, and clinically significant metabolites) to the target ('antigenic') molecules of DOA/Tox screening tests. These results were compared with cross-reactivity data in the package inserts of immunoassays marketed for clinical testing. The causes for false positives for phencyclidine and tricyclic antidepressant screening immunoassays were investigated at the authors' medical center using gas chromatography/mass spectrometry as a confirmatory method. RESULTS: The results illustrate three major challenges for routine DOA/Tox screening immunoassays used in emergency medicine. First, for some classes of drugs, the structural diversity of common drugs within each class has been increasing, thereby making it difficult for a single assay to detect all compounds without compromising specificity. Second, for some screening assays, common 'out-of-class' drugs may be structurally similar to the target compound so that they account for a high frequency of false positives. Illustrating this point, at the authors' medical center, the majority of positive screening results for phencyclidine and tricyclic antidepressants assays were explained by out-of-class drugs. Third, different manufacturers have adopted varying approaches to marketed immunoassays, leading to substantial inter-assay variability. CONCLUSION: The expanding structural diversity of drugs presents a difficult challenge for routine DOA/Tox screening that limit the clinical utility of these tests in the emergency medicine setting. BioMed Central 2009-04-28 /pmc/articles/PMC2688477/ /pubmed/19400959 http://dx.doi.org/10.1186/1471-227X-9-5 Text en Copyright © 2009 Krasowski et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Krasowski, Matthew D
Pizon, Anthony F
Siam, Mohamed G
Giannoutsos, Spiros
Iyer, Manisha
Ekins, Sean
Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine
title Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine
title_full Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine
title_fullStr Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine
title_full_unstemmed Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine
title_short Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine
title_sort using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688477/
https://www.ncbi.nlm.nih.gov/pubmed/19400959
http://dx.doi.org/10.1186/1471-227X-9-5
work_keys_str_mv AT krasowskimatthewd usingmolecularsimilaritytohighlightthechallengesofroutineimmunoassaybaseddrugofabusetoxicologyscreeninginemergencymedicine
AT pizonanthonyf usingmolecularsimilaritytohighlightthechallengesofroutineimmunoassaybaseddrugofabusetoxicologyscreeninginemergencymedicine
AT siammohamedg usingmolecularsimilaritytohighlightthechallengesofroutineimmunoassaybaseddrugofabusetoxicologyscreeninginemergencymedicine
AT giannoutsosspiros usingmolecularsimilaritytohighlightthechallengesofroutineimmunoassaybaseddrugofabusetoxicologyscreeninginemergencymedicine
AT iyermanisha usingmolecularsimilaritytohighlightthechallengesofroutineimmunoassaybaseddrugofabusetoxicologyscreeninginemergencymedicine
AT ekinssean usingmolecularsimilaritytohighlightthechallengesofroutineimmunoassaybaseddrugofabusetoxicologyscreeninginemergencymedicine