Cargando…
Model selection in the reconstruction of regulatory networks from time-series data
BACKGROUND: A widely used approach to reconstruct regulatory networks from time-series data is based on the first-order, linear ordinary differential equations. This approach is justified if it is applied to system relaxations after weak perturbations. However, weak perturbations may not be informat...
Autores principales: | Novikov, Eugene, Barillot, Emmanuel |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688516/ https://www.ncbi.nlm.nih.gov/pubmed/19416509 http://dx.doi.org/10.1186/1756-0500-2-68 |
Ejemplares similares
-
Regulatory network reconstruction using an integral additive model with flexible kernel functions
por: Novikov, Eugene, et al.
Publicado: (2008) -
Independent Component Extraction from the Incomplete Coordinate Time Series of Regional GNSS Networks
por: Feng, Tengfei, et al.
Publicado: (2021) -
Using GeneReg to construct time delay gene regulatory networks
por: Huang, Tao, et al.
Publicado: (2010) -
EMA - A R package for Easy Microarray data analysis
por: Servant, Nicolas, et al.
Publicado: (2010) -
BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data
por: Gonçalves, Joana P, et al.
Publicado: (2009)