Cargando…
Bioinformatics Methods for Learning Radiation-Induced Lung Inflammation from Heterogeneous Retrospective and Prospective Data
Radiotherapy outcomes are determined by complex interactions between physical and biological factors, reflecting both treatment conditions and underlying genetics. Recent advances in radiotherapy and biotechnology provide new opportunities and challenges for predicting radiation-induced toxicities,...
Autores principales: | Spencer, Sarah J., Almiron Bonnin, Damian, Deasy, Joseph O., Bradley, Jeffrey D., El Naqa, Issam |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688763/ https://www.ncbi.nlm.nih.gov/pubmed/19704920 http://dx.doi.org/10.1155/2009/892863 |
Ejemplares similares
-
Editorial: Machine Learning With Radiation Oncology Big Data
por: Deng, Jun, et al.
Publicado: (2018) -
Machine learning in radiation oncology: theory and applications
por: El Naqa, Issam, et al.
Publicado: (2015) -
In silico trials of combination immuno-radiation for unresectable hepatocellular carcinoma
por: Mendiratta-Lala, Mishal, et al.
Publicado: (2023) -
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling
por: Luo, Yi, et al.
Publicado: (2019) -
A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates
por: Oh, Jung Hun, et al.
Publicado: (2012)