Cargando…
Bayesian Inference for Nonnegative Matrix Factorisation Models
We describe nonnegative matrix factorisation (NMF) with a Kullback-Leibler (KL) error measure in a statistical framework, with a hierarchical generative model consisting of an observation and a prior component. Omitting the prior leads to the standard KL-NMF algorithms as special cases, where maximu...
Autor principal: | Cemgil, Ali Taylan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688815/ https://www.ncbi.nlm.nih.gov/pubmed/19536273 http://dx.doi.org/10.1155/2009/785152 |
Ejemplares similares
-
Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation
por: FitzGerald, Derry, et al.
Publicado: (2008) -
Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation
por: Saito, Shota, et al.
Publicado: (2015) -
Classification of Copper Minerals by Handheld Laser-Induced Breakdown Spectroscopy and Nonnegative Tensor Factorisation
por: Wójcik, Michał, et al.
Publicado: (2020) -
Uncovering Community Structures with Initialized Bayesian Nonnegative Matrix Factorization
por: Tang, Xianchao, et al.
Publicado: (2014) -
Correction: Uncovering Community Structures with Initialized Bayesian Nonnegative Matrix Factorization
Publicado: (2014)