Cargando…
Genetic analysis of growth curves using the SAEM algorithm
The analysis of nonlinear function-valued characters is very important in genetic studies, especially for growth traits of agricultural and laboratory species. Inference in nonlinear mixed effects models is, however, quite complex and is usually based on likelihood approximations or Bayesian methods...
Autores principales: | Jaffrézic, Florence, Meza, Cristian, Lavielle, Marc, Foulley, Jean-Louis |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689265/ https://www.ncbi.nlm.nih.gov/pubmed/17129561 http://dx.doi.org/10.1186/1297-9686-38-6-583 |
Ejemplares similares
-
The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects
por: Chan, Phylinda L. S., et al.
Publicado: (2010) -
EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis
por: Foulley, Jean-Louis, et al.
Publicado: (2000) -
A quasi-score approach to the analysis of ordered categorical data via a mixed heteroskedastic threshold model
por: Jaffrézic, Florence, et al.
Publicado: (1999) -
Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr
por: Schoemaker, Rik, et al.
Publicado: (2019) -
Modelling the growth curve of Maine-Anjou beef cattle using heteroskedastic random coefficients models
por: Robert-Granié, Christèle, et al.
Publicado: (2002)