Cargando…
Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia
Neuropathic pain is a debilitating pain condition that occurs after nerve damage. Such pain is considered to be a reflection of the aberrant excitability of dorsal horn neurons. Emerging lines of evidence indicate that spinal microglia play a crucial role in neuronal excitability and the pathogenesi...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690582/ https://www.ncbi.nlm.nih.gov/pubmed/19426564 http://dx.doi.org/10.1186/1744-8069-5-23 |
_version_ | 1782167837593305088 |
---|---|
author | Masuda, Junya Tsuda, Makoto Tozaki-Saitoh, Hidetoshi Inoue, Kazuhide |
author_facet | Masuda, Junya Tsuda, Makoto Tozaki-Saitoh, Hidetoshi Inoue, Kazuhide |
author_sort | Masuda, Junya |
collection | PubMed |
description | Neuropathic pain is a debilitating pain condition that occurs after nerve damage. Such pain is considered to be a reflection of the aberrant excitability of dorsal horn neurons. Emerging lines of evidence indicate that spinal microglia play a crucial role in neuronal excitability and the pathogenesis of neuropathic pain, but the mechanisms underlying neuron-microglia communications in the dorsal horn remain to be fully elucidated. A recent study has demonstrated that platelet-derived growth factor (PDGF) expressed in dorsal horn neurons contributes to neuropathic pain after nerve injury, yet how PDGF produces pain hypersensitivity remains unknown. Here we report an involvement of spinal microglia in PDGF-induced tactile allodynia. A single intrathecal delivery of PDGF B-chain homodimer (PDGF-BB) to naive rats produced a robust and long-lasting decrease in paw withdrawal threshold in a dose-dependent manner. Following PDGF administration, the immunofluorescence for phosphorylated PDGF β-receptor (p-PDGFRβ), an activated form, was markedly increased in the spinal dorsal horn. Interestingly, almost all p-PDGFRβ-positive cells were double-labeled with an antibody for the microglia marker OX-42, but not with antibodies for other markers of neurons, astrocytes and oligodendrocytes. PDGF-stimulated microglia in vivo transformed into a modest activated state in terms of their cell number and morphology. Furthermore, PDGF-BB-induced tactile allodynia was prevented by a daily intrathecal administration of minocycline, which is known to inhibit microglia activation. Moreover, in rats with an injury to the fifth lumbar spinal nerve (an animal model of neuropathic pain), the immunofluorescence for p-PDGFRβ was markedly enhanced exclusively in microglia in the ipsilateral dorsal horn. Together, our findings suggest that spinal microglia critically contribute to PDGF-induced tactile allodynia, and it is also assumed that microglial PDGF signaling may have a role in the pathogenesis of neuropathic pain. |
format | Text |
id | pubmed-2690582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26905822009-06-04 Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia Masuda, Junya Tsuda, Makoto Tozaki-Saitoh, Hidetoshi Inoue, Kazuhide Mol Pain Short Report Neuropathic pain is a debilitating pain condition that occurs after nerve damage. Such pain is considered to be a reflection of the aberrant excitability of dorsal horn neurons. Emerging lines of evidence indicate that spinal microglia play a crucial role in neuronal excitability and the pathogenesis of neuropathic pain, but the mechanisms underlying neuron-microglia communications in the dorsal horn remain to be fully elucidated. A recent study has demonstrated that platelet-derived growth factor (PDGF) expressed in dorsal horn neurons contributes to neuropathic pain after nerve injury, yet how PDGF produces pain hypersensitivity remains unknown. Here we report an involvement of spinal microglia in PDGF-induced tactile allodynia. A single intrathecal delivery of PDGF B-chain homodimer (PDGF-BB) to naive rats produced a robust and long-lasting decrease in paw withdrawal threshold in a dose-dependent manner. Following PDGF administration, the immunofluorescence for phosphorylated PDGF β-receptor (p-PDGFRβ), an activated form, was markedly increased in the spinal dorsal horn. Interestingly, almost all p-PDGFRβ-positive cells were double-labeled with an antibody for the microglia marker OX-42, but not with antibodies for other markers of neurons, astrocytes and oligodendrocytes. PDGF-stimulated microglia in vivo transformed into a modest activated state in terms of their cell number and morphology. Furthermore, PDGF-BB-induced tactile allodynia was prevented by a daily intrathecal administration of minocycline, which is known to inhibit microglia activation. Moreover, in rats with an injury to the fifth lumbar spinal nerve (an animal model of neuropathic pain), the immunofluorescence for p-PDGFRβ was markedly enhanced exclusively in microglia in the ipsilateral dorsal horn. Together, our findings suggest that spinal microglia critically contribute to PDGF-induced tactile allodynia, and it is also assumed that microglial PDGF signaling may have a role in the pathogenesis of neuropathic pain. BioMed Central 2009-05-11 /pmc/articles/PMC2690582/ /pubmed/19426564 http://dx.doi.org/10.1186/1744-8069-5-23 Text en Copyright © 2009 Masuda et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Report Masuda, Junya Tsuda, Makoto Tozaki-Saitoh, Hidetoshi Inoue, Kazuhide Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia |
title | Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia |
title_full | Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia |
title_fullStr | Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia |
title_full_unstemmed | Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia |
title_short | Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia |
title_sort | intrathecal delivery of pdgf produces tactile allodynia through its receptors in spinal microglia |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690582/ https://www.ncbi.nlm.nih.gov/pubmed/19426564 http://dx.doi.org/10.1186/1744-8069-5-23 |
work_keys_str_mv | AT masudajunya intrathecaldeliveryofpdgfproducestactileallodyniathroughitsreceptorsinspinalmicroglia AT tsudamakoto intrathecaldeliveryofpdgfproducestactileallodyniathroughitsreceptorsinspinalmicroglia AT tozakisaitohhidetoshi intrathecaldeliveryofpdgfproducestactileallodyniathroughitsreceptorsinspinalmicroglia AT inouekazuhide intrathecaldeliveryofpdgfproducestactileallodyniathroughitsreceptorsinspinalmicroglia |