Cargando…

An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions

Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine p...

Descripción completa

Detalles Bibliográficos
Autores principales: van Haaften, Rachel I. M., Luceri, Cristina, van Erk, Arie, Evelo, Chris T. A.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690723/
https://www.ncbi.nlm.nih.gov/pubmed/19274473
http://dx.doi.org/10.1007/s12263-009-0115-8
_version_ 1782167847347159040
author van Haaften, Rachel I. M.
Luceri, Cristina
van Erk, Arie
Evelo, Chris T. A.
author_facet van Haaften, Rachel I. M.
Luceri, Cristina
van Erk, Arie
Evelo, Chris T. A.
author_sort van Haaften, Rachel I. M.
collection PubMed
description Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data.
format Text
id pubmed-2690723
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-26907232009-06-08 An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions van Haaften, Rachel I. M. Luceri, Cristina van Erk, Arie Evelo, Chris T. A. Genes Nutr Brief Communication Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data. Springer-Verlag 2009-03-10 2009-06 /pmc/articles/PMC2690723/ /pubmed/19274473 http://dx.doi.org/10.1007/s12263-009-0115-8 Text en © The Author(s) 2009
spellingShingle Brief Communication
van Haaften, Rachel I. M.
Luceri, Cristina
van Erk, Arie
Evelo, Chris T. A.
An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions
title An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions
title_full An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions
title_fullStr An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions
title_full_unstemmed An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions
title_short An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions
title_sort integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions
topic Brief Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690723/
https://www.ncbi.nlm.nih.gov/pubmed/19274473
http://dx.doi.org/10.1007/s12263-009-0115-8
work_keys_str_mv AT vanhaaftenrachelim anintegratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions
AT lucericristina anintegratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions
AT vanerkarie anintegratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions
AT evelochrista anintegratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions
AT vanhaaftenrachelim integratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions
AT lucericristina integratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions
AT vanerkarie integratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions
AT evelochrista integratedbioinformaticsapproachtoimprovetwocolormicroarrayqualitycontrolimpactonbiologicalconclusions