Cargando…
Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation
In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence, metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However, an inherent limitation of a stoichiometric approach such as f...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690837/ https://www.ncbi.nlm.nih.gov/pubmed/19521528 http://dx.doi.org/10.1371/journal.pcbi.1000410 |
_version_ | 1782167852523978752 |
---|---|
author | Teusink, Bas Wiersma, Anne Jacobs, Leo Notebaart, Richard A. Smid, Eddy J. |
author_facet | Teusink, Bas Wiersma, Anne Jacobs, Leo Notebaart, Richard A. Smid, Eddy J. |
author_sort | Teusink, Bas |
collection | PubMed |
description | In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence, metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However, an inherent limitation of a stoichiometric approach such as flux balance analysis is that it can predict only flux distributions that result in maximal yields. Hence, previous attempts to use FBA to predict metabolic fluxes in Lactobacillus plantarum failed, as this lactic acid bacterium produces lactate, even under glucose-limited chemostat conditions, where FBA predicted mixed acid fermentation as an alternative pathway leading to a higher yield. In this study we tested, however, whether long-term adaptation on an unusual and poor carbon source (for this bacterium) would select for mutants with optimal biomass yields. We have therefore adapted Lactobacillus plantarum to grow well on glycerol as its main growth substrate. After prolonged serial dilutions, the growth yield and corresponding fluxes were compared to in silico predictions. Surprisingly, the organism still produced mainly lactate, which was corroborated by FBA to indeed be optimal. To understand these results, constraint-based elementary flux mode analysis was developed that predicted 3 out of 2669 possible flux modes to be optimal under the experimental conditions. These optimal pathways corresponded very closely to the experimentally observed fluxes and explained lactate formation as the result of competition for oxygen by the other flux modes. Hence, these results provide thorough understanding of adaptive evolution, allowing in silico predictions of the resulting flux states, provided that the selective growth conditions favor yield optimization as the winning strategy. |
format | Text |
id | pubmed-2690837 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26908372009-06-12 Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation Teusink, Bas Wiersma, Anne Jacobs, Leo Notebaart, Richard A. Smid, Eddy J. PLoS Comput Biol Research Article In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence, metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However, an inherent limitation of a stoichiometric approach such as flux balance analysis is that it can predict only flux distributions that result in maximal yields. Hence, previous attempts to use FBA to predict metabolic fluxes in Lactobacillus plantarum failed, as this lactic acid bacterium produces lactate, even under glucose-limited chemostat conditions, where FBA predicted mixed acid fermentation as an alternative pathway leading to a higher yield. In this study we tested, however, whether long-term adaptation on an unusual and poor carbon source (for this bacterium) would select for mutants with optimal biomass yields. We have therefore adapted Lactobacillus plantarum to grow well on glycerol as its main growth substrate. After prolonged serial dilutions, the growth yield and corresponding fluxes were compared to in silico predictions. Surprisingly, the organism still produced mainly lactate, which was corroborated by FBA to indeed be optimal. To understand these results, constraint-based elementary flux mode analysis was developed that predicted 3 out of 2669 possible flux modes to be optimal under the experimental conditions. These optimal pathways corresponded very closely to the experimentally observed fluxes and explained lactate formation as the result of competition for oxygen by the other flux modes. Hence, these results provide thorough understanding of adaptive evolution, allowing in silico predictions of the resulting flux states, provided that the selective growth conditions favor yield optimization as the winning strategy. Public Library of Science 2009-06-12 /pmc/articles/PMC2690837/ /pubmed/19521528 http://dx.doi.org/10.1371/journal.pcbi.1000410 Text en Teusink et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Teusink, Bas Wiersma, Anne Jacobs, Leo Notebaart, Richard A. Smid, Eddy J. Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation |
title | Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation |
title_full | Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation |
title_fullStr | Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation |
title_full_unstemmed | Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation |
title_short | Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation |
title_sort | understanding the adaptive growth strategy of lactobacillus plantarum by in silico optimisation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690837/ https://www.ncbi.nlm.nih.gov/pubmed/19521528 http://dx.doi.org/10.1371/journal.pcbi.1000410 |
work_keys_str_mv | AT teusinkbas understandingtheadaptivegrowthstrategyoflactobacillusplantarumbyinsilicooptimisation AT wiersmaanne understandingtheadaptivegrowthstrategyoflactobacillusplantarumbyinsilicooptimisation AT jacobsleo understandingtheadaptivegrowthstrategyoflactobacillusplantarumbyinsilicooptimisation AT notebaartricharda understandingtheadaptivegrowthstrategyoflactobacillusplantarumbyinsilicooptimisation AT smideddyj understandingtheadaptivegrowthstrategyoflactobacillusplantarumbyinsilicooptimisation |