Cargando…

Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration

Recent studies using functional imaging and electrophysiology demonstrate that processes related to sensory integration are not restricted to higher association cortices but already occur in early sensory cortices, such as primary auditory cortex. While anatomical studies suggest the superior tempor...

Descripción completa

Detalles Bibliográficos
Autores principales: Kayser, Christoph, Logothetis, Nikos K.
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691153/
https://www.ncbi.nlm.nih.gov/pubmed/19503750
http://dx.doi.org/10.3389/neuro.07.007.2009
_version_ 1782167866777272320
author Kayser, Christoph
Logothetis, Nikos K.
author_facet Kayser, Christoph
Logothetis, Nikos K.
author_sort Kayser, Christoph
collection PubMed
description Recent studies using functional imaging and electrophysiology demonstrate that processes related to sensory integration are not restricted to higher association cortices but already occur in early sensory cortices, such as primary auditory cortex. While anatomical studies suggest the superior temporal sulcus (STS) as likely source of visual input to auditory cortex, little evidence exists to support this notion at the functional level. Here we tested this hypothesis by simultaneously recording from sites in auditory cortex and STS in alert animals stimulated with dynamic naturalistic audio–visual scenes. Using Granger causality and directed transfer functions we first quantified causal interactions at the level of field potentials, and subsequently determined those frequency bands that show effective interactions, i.e. interactions that are relevant for influencing neuronal firing at the target site. We found that effective interactions from auditory cortex to STS prevail below 20 Hz, while interactions from STS to auditory cortex prevail above 20 Hz. In addition, we found that directed interactions from STS to auditory cortex make a significant contribution to multisensory influences in auditory cortex: Sites in auditory cortex showing multisensory enhancement received stronger feed-back from STS during audio–visual than during auditory stimulation, while sites with multisensory suppression received weaker feed-back. These findings suggest that beta frequencies might be important for inter-areal coupling in the temporal lobe and demonstrate that superior temporal regions indeed provide one major source of visual influences to auditory cortex.
format Text
id pubmed-2691153
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-26911532009-06-05 Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration Kayser, Christoph Logothetis, Nikos K. Front Integr Neurosci Neuroscience Recent studies using functional imaging and electrophysiology demonstrate that processes related to sensory integration are not restricted to higher association cortices but already occur in early sensory cortices, such as primary auditory cortex. While anatomical studies suggest the superior temporal sulcus (STS) as likely source of visual input to auditory cortex, little evidence exists to support this notion at the functional level. Here we tested this hypothesis by simultaneously recording from sites in auditory cortex and STS in alert animals stimulated with dynamic naturalistic audio–visual scenes. Using Granger causality and directed transfer functions we first quantified causal interactions at the level of field potentials, and subsequently determined those frequency bands that show effective interactions, i.e. interactions that are relevant for influencing neuronal firing at the target site. We found that effective interactions from auditory cortex to STS prevail below 20 Hz, while interactions from STS to auditory cortex prevail above 20 Hz. In addition, we found that directed interactions from STS to auditory cortex make a significant contribution to multisensory influences in auditory cortex: Sites in auditory cortex showing multisensory enhancement received stronger feed-back from STS during audio–visual than during auditory stimulation, while sites with multisensory suppression received weaker feed-back. These findings suggest that beta frequencies might be important for inter-areal coupling in the temporal lobe and demonstrate that superior temporal regions indeed provide one major source of visual influences to auditory cortex. Frontiers Research Foundation 2009-05-04 /pmc/articles/PMC2691153/ /pubmed/19503750 http://dx.doi.org/10.3389/neuro.07.007.2009 Text en Copyright © 2009 Kayser and Logothetis. http://www.frontiersin.org/licenseagreement This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
spellingShingle Neuroscience
Kayser, Christoph
Logothetis, Nikos K.
Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration
title Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration
title_full Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration
title_fullStr Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration
title_full_unstemmed Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration
title_short Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration
title_sort directed interactions between auditory and superior temporal cortices and their role in sensory integration
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691153/
https://www.ncbi.nlm.nih.gov/pubmed/19503750
http://dx.doi.org/10.3389/neuro.07.007.2009
work_keys_str_mv AT kayserchristoph directedinteractionsbetweenauditoryandsuperiortemporalcorticesandtheirroleinsensoryintegration
AT logothetisnikosk directedinteractionsbetweenauditoryandsuperiortemporalcorticesandtheirroleinsensoryintegration