Cargando…
Identification of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests
The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm,...
Autores principales: | Xiao, Yuanyuan, Segal, Mark R. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691601/ https://www.ncbi.nlm.nih.gov/pubmed/19543377 http://dx.doi.org/10.1371/journal.pcbi.1000414 |
Ejemplares similares
-
Multivariate random forest prediction of poverty and malnutrition prevalence
por: Browne, Chris, et al.
Publicado: (2021) -
Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models
por: Svetlichnyy, Dmitry, et al.
Publicado: (2015) -
Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes
por: Wang, Yue, et al.
Publicado: (2013) -
Fecal source identification using random forest
por: Roguet, Adélaïde, et al.
Publicado: (2018) -
Mapping Yeast Transcriptional Networks
por: Hughes, Timothy R., et al.
Publicado: (2013)