Cargando…
Granger causality vs. dynamic Bayesian network inference: a comparative study
BACKGROUND: In computational biology, one often faces the problem of deriving the causal relationship among different elements such as genes, proteins, metabolites, neurons and so on, based upon multi-dimensional temporal data. Currently, there are two common approaches used to explore the network s...
Autores principales: | Zou, Cunlu, Feng, Jianfeng |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691740/ https://www.ncbi.nlm.nih.gov/pubmed/19393071 http://dx.doi.org/10.1186/1471-2105-10-122 |
Ejemplares similares
-
Granger causality vs. dynamic Bayesian network inference: a comparative study
por: Zou, Cunlu, et al.
Publicado: (2009) -
Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach
por: Zou, Cunlu, et al.
Publicado: (2010) -
On the Inference of Functional Circadian Networks Using Granger Causality
por: Pourzanjani, Arya, et al.
Publicado: (2015) -
Prophetic Granger Causality to infer gene regulatory networks
por: Carlin, Daniel E., et al.
Publicado: (2017) -
Elastic-Net Copula Granger Causality for Inference of Biological Networks
por: Furqan, Mohammad Shaheryar, et al.
Publicado: (2016)