Cargando…

Glycosylation Directs Targeting and Activation of Cystatin F from Intracellular and Extracellular Sources

Cystatin F is a cysteine protease inhibitor that is selectively expressed in immune cells and unlike other cystatin family members is targeted to a significant extent to intracellular compartments. Initially made as an inactive glycosylated disulfide-linked dimer, cystatin F is converted to an activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Colbert, Jeff D, Plechanovová, Anna, Watts, Colin
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691902/
https://www.ncbi.nlm.nih.gov/pubmed/19192250
http://dx.doi.org/10.1111/j.1600-0854.2009.00881.x
Descripción
Sumario:Cystatin F is a cysteine protease inhibitor that is selectively expressed in immune cells and unlike other cystatin family members is targeted to a significant extent to intracellular compartments. Initially made as an inactive glycosylated disulfide-linked dimer, cystatin F is converted to an active monomer by proteolytic cleavage following transport to the endosomal/lysosomal system. This active form of cystatin F targets cathepsin C/DPPI and probably other cathepsins in immune cells. We show that efficient targeting of cystatin F to the endocytic pathway is dependent not on its unique dimeric conformation but rather on its oligosaccharide chains. We demonstrate the unusual addition of N-linked sugars to an Asn-X-Cys motif in cystatin F and provide evidence that the mannose 6-phosphate sorting machinery is used to divert cystatin F from the secretory pathway and to mediate its uptake from extracellular pools. These studies identify a function for the oligosaccharides on cystatin F and raise the possibility that cystatin F might regulate proteases in transby secretion in an inactive form by one cell and subsequent internalization and activation by another cell.