Cargando…
The Time-Course of Visual Categorizations: You Spot the Animal Faster than the Bird
BACKGROUND: Since the pioneering study by Rosch and colleagues in the 70s, it is commonly agreed that basic level perceptual categories (dog, chair…) are accessed faster than superordinate ones (animal, furniture…). Nevertheless, the speed at which objects presented in natural images can be processe...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693927/ https://www.ncbi.nlm.nih.gov/pubmed/19536292 http://dx.doi.org/10.1371/journal.pone.0005927 |
Sumario: | BACKGROUND: Since the pioneering study by Rosch and colleagues in the 70s, it is commonly agreed that basic level perceptual categories (dog, chair…) are accessed faster than superordinate ones (animal, furniture…). Nevertheless, the speed at which objects presented in natural images can be processed in a rapid go/no-go visual superordinate categorization task has challenged this “basic level advantage”. PRINCIPAL FINDINGS: Using the same task, we compared human processing speed when categorizing natural scenes as containing either an animal (superordinate level), or a specific animal (bird or dog, basic level). Human subjects require an additional 40–65 ms to decide whether an animal is a bird or a dog and most errors are induced by non-target animals. Indeed, processing time is tightly linked with the type of non-targets objects. Without any exemplar of the same superordinate category to ignore, the basic level category is accessed as fast as the superordinate category, whereas the presence of animal non-targets induces both an increase in reaction time and a decrease in accuracy. CONCLUSIONS AND SIGNIFICANCE: These results support the parallel distributed processing theory (PDP) and might reconciliate controversial studies recently published. The visual system can quickly access a coarse/abstract visual representation that allows fast decision for superordinate categorization of objects but additional time-consuming visual analysis would be necessary for a decision at the basic level based on more detailed representations. |
---|