Cargando…
A graphical model approach for inferring large-scale networks integrating gene expression and genetic polymorphism
BACKGROUND: Graphical models (e.g., Bayesian networks) have been used frequently to describe complex interaction patterns and dependent structures among genes and other phenotypes. Estimation of such networks has been a challenging problem when the genes considered greatly outnumber the samples, and...
Autores principales: | Chu, Jen-hwa, Weiss, Scott T, Carey, Vincent J, Raby, Benjamin A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694152/ https://www.ncbi.nlm.nih.gov/pubmed/19473523 http://dx.doi.org/10.1186/1752-0509-3-55 |
Ejemplares similares
-
Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes
por: Chu, Jen-hwa, et al.
Publicado: (2011) -
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019) -
Algorithm of OMA for large-scale orthology inference
por: Roth, Alexander CJ, et al.
Publicado: (2008) -
Graphical calibration curves and the integrated calibration index (ICI) for competing risk models
por: Austin, Peter C., et al.
Publicado: (2022) -
Copy number variation genotyping using family information
por: Chu, Jen-hwa, et al.
Publicado: (2013)