Cargando…
Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP
Dominantly inherited mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common cause of familial Parkinson's disease (PD) and have also been identified in individuals with sporadic PD. Although the exact cellular function of LRRK2 remains unknown, most PD-linked mutations a...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694275/ https://www.ncbi.nlm.nih.gov/pubmed/19536328 http://dx.doi.org/10.1371/journal.pone.0005949 |
_version_ | 1782168066319187968 |
---|---|
author | Ding, Xiaodong Goldberg, Matthew S. |
author_facet | Ding, Xiaodong Goldberg, Matthew S. |
author_sort | Ding, Xiaodong |
collection | PubMed |
description | Dominantly inherited mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common cause of familial Parkinson's disease (PD) and have also been identified in individuals with sporadic PD. Although the exact cellular function of LRRK2 remains unknown, most PD-linked mutations appear to be toxic to cells in culture via mechanisms that depend on the kinase activity of LRRK2 or on the formation of cytoplasmic inclusions. Here we show that the E3 ubiquitin ligase CHIP physically associates with LRRK2 and regulates the cellular abundance of LRRK2. We further show that LRRK2 forms a complex with overexpressed and endogenous CHIP and Hsp90. Our data indicates that the destabilization of LRRK2 by CHIP is due to ubiquitination and proteasome-dependent degradation. Hsp90 can attenuate CHIP-mediated degradation and this can be blocked by the Hsp90 inhibitor geldanamycin. These findings provide important insight into the cellular regulation of LRRK2 stability and may lead to the development of therapeutics to treat PD based on controlling LRRK2 stability. |
format | Text |
id | pubmed-2694275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26942752009-06-16 Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP Ding, Xiaodong Goldberg, Matthew S. PLoS One Research Article Dominantly inherited mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common cause of familial Parkinson's disease (PD) and have also been identified in individuals with sporadic PD. Although the exact cellular function of LRRK2 remains unknown, most PD-linked mutations appear to be toxic to cells in culture via mechanisms that depend on the kinase activity of LRRK2 or on the formation of cytoplasmic inclusions. Here we show that the E3 ubiquitin ligase CHIP physically associates with LRRK2 and regulates the cellular abundance of LRRK2. We further show that LRRK2 forms a complex with overexpressed and endogenous CHIP and Hsp90. Our data indicates that the destabilization of LRRK2 by CHIP is due to ubiquitination and proteasome-dependent degradation. Hsp90 can attenuate CHIP-mediated degradation and this can be blocked by the Hsp90 inhibitor geldanamycin. These findings provide important insight into the cellular regulation of LRRK2 stability and may lead to the development of therapeutics to treat PD based on controlling LRRK2 stability. Public Library of Science 2009-06-17 /pmc/articles/PMC2694275/ /pubmed/19536328 http://dx.doi.org/10.1371/journal.pone.0005949 Text en Ding, Goldberg. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ding, Xiaodong Goldberg, Matthew S. Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP |
title | Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP |
title_full | Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP |
title_fullStr | Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP |
title_full_unstemmed | Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP |
title_short | Regulation of LRRK2 Stability by the E3 Ubiquitin Ligase CHIP |
title_sort | regulation of lrrk2 stability by the e3 ubiquitin ligase chip |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694275/ https://www.ncbi.nlm.nih.gov/pubmed/19536328 http://dx.doi.org/10.1371/journal.pone.0005949 |
work_keys_str_mv | AT dingxiaodong regulationoflrrk2stabilitybythee3ubiquitinligasechip AT goldbergmatthews regulationoflrrk2stabilitybythee3ubiquitinligasechip |