Cargando…

A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors

The endocytosis of AMPA receptors (AMPARs) underlies several forms of synaptic plasticity including NMDA receptor (NMDAR)-dependent long-term depression (LTD) but the molecular mechanisms responsible for this trafficking remain unknown. Here we demonstrate that PSD-95, a major postsynaptic density p...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhattacharyya, Samarjit, Biou, Virginie, Xu, Weifeng, Schlüter, Oliver, Malenka, Robert C.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694745/
https://www.ncbi.nlm.nih.gov/pubmed/19169250
http://dx.doi.org/10.1038/nn.2249
Descripción
Sumario:The endocytosis of AMPA receptors (AMPARs) underlies several forms of synaptic plasticity including NMDA receptor (NMDAR)-dependent long-term depression (LTD) but the molecular mechanisms responsible for this trafficking remain unknown. Here we demonstrate that PSD-95, a major postsynaptic density protein, plays a key role in NMDAR-triggered endocytosis of synaptic AMPARs because of its binding to AKAP150, a scaffold for specific protein kinases and phosphatases. Knockdown of PSD-95 with shRNA blocks NMDAR-triggered, but not constitutive nor mGluR-triggered endocytosis of AMPARs. Deletion of PSD-95’s SH(3) and GK domains as well as a point mutation (L460P), both of which inhibit binding of PSD-95 to AKAP150, also block NMDAR-triggered AMPAR endocytosis. Furthermore, expression of a mutant AKAP150 that does not bind calcineurin inhibits this NMDAR-triggered trafficking event. These results suggest that PSD-95’s interaction with AKAP150 is critical for NMDAR-triggered AMPAR endocytosis and LTD, possibly because these scaffolds position calcineurin in the appropriate subsynaptic domain.