Cargando…

Effects of melatonin in experimental stroke models in acute, sub-acute, and chronic stages

Melatonin (n-acetyl-5-methoxy-tryptamine), a naturally occurring indole produced mainly by the pineal gland, is a well known antioxidant. Stroke (cerebral ischemia) is the second leading cause of death worldwide. To date, however, effective and safe treatment for stroke remains unavailable. Melatoni...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Hsiao-Wen, Lee, E-Jian
Formato: Texto
Lenguaje:English
Publicado: Dove Medical Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695239/
https://www.ncbi.nlm.nih.gov/pubmed/19557110
Descripción
Sumario:Melatonin (n-acetyl-5-methoxy-tryptamine), a naturally occurring indole produced mainly by the pineal gland, is a well known antioxidant. Stroke (cerebral ischemia) is the second leading cause of death worldwide. To date, however, effective and safe treatment for stroke remains unavailable. Melatonin is both lipid- and water-soluble and readily crosses the blood–brain barrier (BBB). Increasing evidence has shown that, in animal stroke models, administering melatonin significantly reduces infarct volume, edema, and oxidative damage and improves electrophysiological and behavioral performance. Here, we reviewed studies that assess effects of melatonin on cerebral ischemia in acute, sub-acute, and chronic stages. In addition to its potent antioxidant properties, melatonin exerts antiapoptotic, antiexcitotoxic, anti-inflammatory effects and promotes mitochondrial functions in animals with cerebral ischemia. Given that melatonin shows almost no toxicity to humans and possesses multifaceted protective capacity against cerebral ischemia, it is valuable to consider using melatonin in clinical trials on patients suffering from stroke.