Cargando…

Soluble Tumor Necrosis Factor Receptor Mediates Cell Proliferation on Lipopolysaccharide-Stimulated Cultured Human Decidual Stromal Cells

The tumor necrosis factor-alpha (TNF-α) cytokine receptor system modulates apoptosis in many cell types, so we have investigated the role of sTNFR1 in bacterial lipopolysaccharide (LPS)-induced cell death in cultured human decidual stromal cells, hypothesizing that sTNFR1 might play a central role i...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Xue-Wen, Zhang, Xin-Wen, Li, Xu
Formato: Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695263/
https://www.ncbi.nlm.nih.gov/pubmed/19564935
http://dx.doi.org/10.3390/ijms10052010
Descripción
Sumario:The tumor necrosis factor-alpha (TNF-α) cytokine receptor system modulates apoptosis in many cell types, so we have investigated the role of sTNFR1 in bacterial lipopolysaccharide (LPS)-induced cell death in cultured human decidual stromal cells, hypothesizing that sTNFR1 might play a central role in this action. In this work we characterized in vitro decidual stromal cell viability with LPS treatment and LPS and sTNFR1 co-treatment. We found that LPS treatment induced decidual stromal cell death in a dose-dependent manner and that sTNFR1 blocked the effect of the LPS treatment. There was a significant proliferation among cells co-incubated with LPS at 10 μg/mL and sTNFR1 at 0.1 μg/mL compared with LPS and sTNFR1 at 0.01, 0.05, 0.2 and 0.5 μg/mL (p < 0.01). This study demonstrated that LPS led to decidual stromal cell death in vitro but sTNFR1 down-regulates the cell death due to LPS under the same conditions. Taken together, these results suggested that sTNFR1 could participate in a protective mechanism against endotoxin.