Cargando…
Epigenetic Regulation of HIV-1 Latency by Cytosine Methylation
Human immunodeficiency virus type 1 (HIV-1) persists in a latent state within resting CD4(+) T cells of infected persons treated with highly active antiretroviral therapy (HAART). This reservoir must be eliminated for the clearance of infection. Using a cDNA library screen, we have identified methyl...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695767/ https://www.ncbi.nlm.nih.gov/pubmed/19557157 http://dx.doi.org/10.1371/journal.ppat.1000495 |
Sumario: | Human immunodeficiency virus type 1 (HIV-1) persists in a latent state within resting CD4(+) T cells of infected persons treated with highly active antiretroviral therapy (HAART). This reservoir must be eliminated for the clearance of infection. Using a cDNA library screen, we have identified methyl-CpG binding domain protein 2 (MBD2) as a regulator of HIV-1 latency. Two CpG islands flank the HIV-1 transcription start site and are methylated in latently infected Jurkat cells and primary CD4(+) T cells. MBD2 and histone deacetylase 2 (HDAC2) are found at one of these CpG islands during latency. Inhibition of cytosine methylation with 5-aza-2′deoxycytidine (aza-CdR) abrogates recruitment of MBD2 and HDAC2. Furthermore, aza-CdR potently synergizes with the NF-κB activators prostratin or TNF-α to reactivate latent HIV-1. These observations confirm that cytosine methylation and MBD2 are epigenetic regulators of HIV-1 latency. Clearance of HIV-1 from infected persons may be enhanced by inclusion of DNA methylation inhibitors, such as aza-CdR, and NF-κB activators into current antiviral therapies. |
---|