Cargando…
Maximum-Likelihood Model Averaging To Profile Clustering of Site Types across Discrete Linear Sequences
A major analytical challenge in computational biology is the detection and description of clusters of specified site types, such as polymorphic or substituted sites within DNA or protein sequences. Progress has been stymied by a lack of suitable methods to detect clusters and to estimate the extent...
Autores principales: | Zhang, Zhang, Townsend, Jeffrey P. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695770/ https://www.ncbi.nlm.nih.gov/pubmed/19557160 http://dx.doi.org/10.1371/journal.pcbi.1000421 |
Ejemplares similares
-
Divisive hierarchical maximum likelihood clustering
por: Sharma, Alok, et al.
Publicado: (2017) -
An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification
por: Zhao, Yixiu, et al.
Publicado: (2018) -
Stepwise iterative maximum likelihood clustering approach
por: Sharma, Alok, et al.
Publicado: (2016) -
Measuring Transcription Factor–Binding Site Turnover: A Maximum Likelihood Approach Using Phylogenies
por: Otto, Wolfgang, et al.
Publicado: (2009) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998)