Cargando…

Serotonin excites fast-spiking interneurons in the striatum

Fast-spiking interneurons (FSIs) control the output of the striatum by mediating feed-forward GABAergic inhibition of projection neurons. Their neuromodulation can therefore critically affect the operation of the basal ganglia. We studied the effects of 5-hydroxytryptamine (5-HT, serotonin), a neuro...

Descripción completa

Detalles Bibliográficos
Autores principales: Blomeley, Craig P, Bracci, Enrico
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695856/
https://www.ncbi.nlm.nih.gov/pubmed/19419423
http://dx.doi.org/10.1111/j.1460-9568.2009.06725.x
_version_ 1782168237391216640
author Blomeley, Craig P
Bracci, Enrico
author_facet Blomeley, Craig P
Bracci, Enrico
author_sort Blomeley, Craig P
collection PubMed
description Fast-spiking interneurons (FSIs) control the output of the striatum by mediating feed-forward GABAergic inhibition of projection neurons. Their neuromodulation can therefore critically affect the operation of the basal ganglia. We studied the effects of 5-hydroxytryptamine (5-HT, serotonin), a neurotransmitter released in the striatum by fibres originating in the raphe nuclei, on FSIs recorded with whole-cell techniques in rat brain slices. Bath application of serotonin (30 μm) elicited slow, reversible depolarizations (9 ± 3 mV) in 37/46 FSIs. Similar effects were observed using conventional whole-cell and gramicidin perforated-patch techniques. The serotonin effects persisted in the presence of tetrodotoxin and were mediated by 5-HT(2C) receptors, as they were reversed by the 5-HT(2) receptor antagonist ketanserin and by the selective 5-HT(2C) receptor antagonist RS 102221. Serotonin-induced depolarizations were not accompanied by a significant change in FSI input resistance. Serotonin caused the appearance of spontaneous firing in a minority (5/35) of responsive FSIs, whereas it strongly increased FSI excitability in each of the remaining responsive FSIs, significantly decreasing the latency of the first spike evoked by a current step and increasing spike frequency. Voltage-clamp experiments revealed that serotonin suppressed a current that reversed around −100 mV and displayed a marked inward rectification, a finding that explains the lack of effects of serotonin on input resistance. Consistently, the effects of serotonin were completely occluded by low concentrations of extracellular barium, which selectively blocks Kir2 channels. We concluded that the excitatory effects of serotonin on FSIs were mediated by 5-HT(2C) receptors and involved suppression of an inwardly rectifying K(+) current.
format Text
id pubmed-2695856
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-26958562009-06-16 Serotonin excites fast-spiking interneurons in the striatum Blomeley, Craig P Bracci, Enrico Eur J Neurosci Synaptic Mechanisms Fast-spiking interneurons (FSIs) control the output of the striatum by mediating feed-forward GABAergic inhibition of projection neurons. Their neuromodulation can therefore critically affect the operation of the basal ganglia. We studied the effects of 5-hydroxytryptamine (5-HT, serotonin), a neurotransmitter released in the striatum by fibres originating in the raphe nuclei, on FSIs recorded with whole-cell techniques in rat brain slices. Bath application of serotonin (30 μm) elicited slow, reversible depolarizations (9 ± 3 mV) in 37/46 FSIs. Similar effects were observed using conventional whole-cell and gramicidin perforated-patch techniques. The serotonin effects persisted in the presence of tetrodotoxin and were mediated by 5-HT(2C) receptors, as they were reversed by the 5-HT(2) receptor antagonist ketanserin and by the selective 5-HT(2C) receptor antagonist RS 102221. Serotonin-induced depolarizations were not accompanied by a significant change in FSI input resistance. Serotonin caused the appearance of spontaneous firing in a minority (5/35) of responsive FSIs, whereas it strongly increased FSI excitability in each of the remaining responsive FSIs, significantly decreasing the latency of the first spike evoked by a current step and increasing spike frequency. Voltage-clamp experiments revealed that serotonin suppressed a current that reversed around −100 mV and displayed a marked inward rectification, a finding that explains the lack of effects of serotonin on input resistance. Consistently, the effects of serotonin were completely occluded by low concentrations of extracellular barium, which selectively blocks Kir2 channels. We concluded that the excitatory effects of serotonin on FSIs were mediated by 5-HT(2C) receptors and involved suppression of an inwardly rectifying K(+) current. Blackwell Publishing Ltd 2009-04 /pmc/articles/PMC2695856/ /pubmed/19419423 http://dx.doi.org/10.1111/j.1460-9568.2009.06725.x Text en Journal compilation © 2009 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
spellingShingle Synaptic Mechanisms
Blomeley, Craig P
Bracci, Enrico
Serotonin excites fast-spiking interneurons in the striatum
title Serotonin excites fast-spiking interneurons in the striatum
title_full Serotonin excites fast-spiking interneurons in the striatum
title_fullStr Serotonin excites fast-spiking interneurons in the striatum
title_full_unstemmed Serotonin excites fast-spiking interneurons in the striatum
title_short Serotonin excites fast-spiking interneurons in the striatum
title_sort serotonin excites fast-spiking interneurons in the striatum
topic Synaptic Mechanisms
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695856/
https://www.ncbi.nlm.nih.gov/pubmed/19419423
http://dx.doi.org/10.1111/j.1460-9568.2009.06725.x
work_keys_str_mv AT blomeleycraigp serotoninexcitesfastspikinginterneuronsinthestriatum
AT braccienrico serotoninexcitesfastspikinginterneuronsinthestriatum